Biological rapid sand filters are often used to remove ammonium from groundwater for drinking water supply. They often operate under dynamic substrate and hydraulic loading conditions, which can lead to increased levels of ammonium and nitrite in the effluent. To determine the maximum nitrification rates and safe operating windows of rapid sand filters, a pilot scale rapid sand filter was used to test short-term increased ammonium loads, set by varying either influent ammonium concentrations or hydraulic loading rates. Ammonium and iron (flock) removal were consistent between the pilot and the full-scale filter. Nitrification rates and ammonia-oxidizing bacteria and archaea were quantified throughout the depth of the filter. The ammonium removal capacity of the filter was determined to be 3.4 g NH4-N m(-3) h(-1), which was 5 times greater than the average ammonium loading rate under reference operating conditions. The ammonium removal rate of the filter was determined by the ammonium loading rate, but was independent of both the flow and influent ammonium concentration individually. Ammonia-oxidizing bacteria and archaea were almost equally abundant in the filter. Both ammonium removal and ammonia-oxidizing bacteria density were strongly stratified, with the highest removal and ammonia-oxidizing bacteria densities at the top of the filter. Cell specific ammonium oxidation rates were on average 0.6 × 10(2) ± 0.2 × 10(2) fg NH4-N h(-1) cell(-1). Our findings indicate that these rapid sand filters can safely remove both nitrite and ammonium over a larger range of loading rates than previously assumed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2014.07.001 | DOI Listing |
Environ Microbiol
January 2025
Institute for Biological Sciences, Applied Ecology and Phycology, University Rostock, Rostock, Germany.
Streptofilum capillatum was recently described and immediately caught scientific attention, because it forms a phylogenetically deep branch in the streptophytes and is characterised by a unique cell coverage composed of piliform scales. Its phylogenetic position and taxonomic rank are still controversial discussed. In the present study, we isolated further strains of Streptofilum from biocrusts in sand dunes and Arctic tundra soil.
View Article and Find Full Text PDFChemosphere
January 2025
Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, Delhi, 110016, India. Electronic address:
The establishment of site-specific target limits (SSTLs) for old municipal solid waste (MSW) dumpsites is essential for defining remediation goals in a scientifically rigorous manner. However, a standardized framework for achieving this is currently lacking. This study proposes a comprehensive framework that integrates high-resolution site characterization (HRSC) tools, targeted sampling, and contaminant transport modeling to derive SSTLs.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China. Electronic address:
The depletion of lubricants in (slippery liquid-infused porous surfaces) SLIPS poses a significant challenge to their long-term functionality. While line-shaped rough structures can mitigate lubricant loss to some extent, they often fail to provide the stability required for sustained performance. In this study, we present a novel porous nanoflower aluminum alloy slippery liquid-infused surface (P-NF-AA SLIPS), which integrates a porous framework with a rough nanoflower structure.
View Article and Find Full Text PDFSe Pu
January 2025
School of Public Health, Nanjing Medical University, Nanjing 211166, China.
Chlorinated coumarins, which are as cytotoxic as highly toxic halobenzoquinones toward CHO-K1 cells, have recently been identified as disinfection byproducts in drinking water disinfection processes. Therefore, detecting coumarins in water samples collected at various stages from drinking water treatment plants helps assess the formation of chlorinated coumarins in drinking water. Hence, a simple, rapid, accurate, and sensitive method for quantifying coumarins in water samples is required.
View Article and Find Full Text PDFInt J Phytoremediation
December 2024
Key Laboratory of Urban Underground Engineering of Ministry of Education, Beijing Jiaotong University, Beijing, PR China.
The flowing-water remediation of contaminated soil was investigated. Urease combined with biochar (UCB) technology was used to handle the Pb-contaminated sand column. The results showed that with the continuous increase of pore volume, the concentration of Pb in the leachate undergoes three stages: slow growth, rapid growth, and steady state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!