Lyotropic liquid crystalline nanostructured particles (e.g., cubosomes and hexosomes) are being investigated as delivery systems for therapeutics in biomedical and pharmaceutical applications. Long term stability of these particulate dispersions is generally provided by steric stabilizers, typically commercially available amphiphilic copolymers such as Pluronic F127. Few examples exist of tailored molecular materials designed for lyotropic liquid crystalline nanostructured particle stabilization. A library of PEGylated-phytanyl copolymers (PEG-PHYT) with varying PEG molecular weights (200-14K Da) was synthesized to assess their performance as steric stabilizers for cubosomes and to establish structure-property relationships. The PEGylated-lipid copolymers were first found to self-assemble in excess water in the absence of cubosomes and also displayed thermotropic liquid crystal phase behavior under cross-polarized light microscopy. An accelerated stability assay was used to assess the performance of the copolymers, compared to Pluronic F127, for stabilizing phytantriol-based cubosomes. Several of the PEGylated-lipid copolymers showed steric stabilizer effectiveness comparable to Pluronic F127. Using synchrotron small-angle X-ray scattering and cryo-transmission electron microscopy, the copolymers were shown to retain the native internal lyotropic liquid crystalline structure, double diamond cubic phase (Q2(D)), of phytantriol dispersions; an important attribute for controlling downstream performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la501471z | DOI Listing |
ACS Nano
January 2025
Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Ordered nanoporous polymer membranes offer opportunities for systematically probing the mechanisms of ion transport under confinement and for realizing useful materials for electrochemical devices. Here, we examine the impact of morphology and ion hydration on the transport of hydroxide and bromide anions in nanostructured polymer membranes with 1 nm scale pores. We use aqueous lyotropic self-assembly of an amphiphilic monomer, with a polymerizable surfactant to create direct hexagonal (H) and gyroid mesophases.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland.
The translation of cell-derived extracellular vesicles (EVs) into biogenic gene delivery systems is limited by relatively inefficient loading strategies. In this work, the loading of various nucleic acids into small EVs via their spontaneous hybridization with preloaded non-lamellar liquid crystalline lipid nanoparticles (LCNPs), forming hybrid EVs (HEVs) is described. It is demonstrated that LCNPs undergo pH-dependent structural transitions from inverse hexagonal (H) phases at pH 5 to more disordered non-lamellar phases, possibly inverse micellar (L) or sponge (L) phases, at pH 7.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Institute for Frontier Materials, Deakin University, Geelong VIC 3216, Australia. Electronic address:
Hypothesis: Optimizing interfacial positioning of crosslinkers within a reactive self-assembled hexagonal lyotropic liquid crystals (HLLC) system could assist in retaining the hexagonal structure during polymerization and thereby improving water filtration performances of the as-synthesized nanofiltration membranes.
Experiments: The positioning of the hydrophilic crosslinker, poly (ethylene glycol) diacrylate (PEGDA), within the reactive HLLC system was systematically investigated using H and C solid nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) techniques. The structural variation and water filtration performances of these HLLC systems with/without crosslinkers after polymerization were further studied using grazing incidence SAXS (GISAXS) and crossflow filtration tests, respectively.
Int J Nanomedicine
December 2024
Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.
Purpose: Atopic dermatitis (AD) is the most common chronic inflammatory skin disease that severely impairs patient's life quality and represents significant therapeutic challenge due to its pathophysiology arising from skin barrier dysfunction. Topical corticosteroids, the mainstay treatment for mild to moderate AD, are usually formulated into conventional dosage forms that are impeded by low drug permeation, resulting in high doses with consequent adverse effects, and also lack properties that would strengthen the skin barrier. Herein, we aimed to develop biomimetic lamellar lyotropic liquid crystals (LLCs), offering a novel alternative to conventional AD treatment.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry at Brown University, 324 Brook Street, Providence, Rhode Island 02912, United States.
Biomacromolecular networks with multiscale fibrillar structures are characterized by exceptional mechanical properties, making them attractive architectures for synthetic materials. However, there is a dearth of synthetic polymeric building blocks capable of forming similarly structured networks. Bottlebrush polymers (BBPs) are anisotropic graft polymers with the potential to mimic and replace biomacromolecules such as tropocollagen for the fabrication of synthetic fibrillar networks; however, a longstanding limitation of BBPs has been the lack of rigidity necessary to access the lyotropic ordering that underpins the formation of collagenous networks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!