Multimodal cortical sensory pathways revealed by sequential transcranial electrical stimulation in mice.

Neurosci Res

Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, Japan.

Published: October 2014

We investigated polysynaptic cortical pathways linking primary to multimodal sensory association areas in mice using transcranial flavoprotein imaging combined with sequential application of transcranial electrical stimulation (TES). Stimulation of primary visual cortex (V1) elicited activity in lateral and medial areas of secondary visual cortices (V2), which were reciprocally connected. Stimulation of V2 areas elicited activity in area 2. Similarly, corticocortical pathways from primary somatosensory cortex (S1) through the corresponding secondary somatosensory areas (S2) to area 2 were observed. Auditory pathways from primary auditory area (A1) through peripheral region (area 22) to area 2 and from anterior auditory field to area 2 were also found. Stimulation in area 2 elicited activity in part of parietal association cortex (PtA), which was reciprocally connected with area 2, and in some areas near the midline including retrosplenial cortex (RSA). A cortical pathway from RSA through anterior cingulate cortex (aCC) to frontal areas was also visualized. These results indicate that area 2, surrounded by visual, somatosensory and auditory cortices, may receive inputs from all three primary sensory areas, and may send outputs through the parietal association cortex to frontal areas, suggesting that area 2 may have an important role in multimodal sensory integration in mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neures.2014.07.004DOI Listing

Publication Analysis

Top Keywords

elicited activity
12
area
10
transcranial electrical
8
electrical stimulation
8
multimodal sensory
8
areas
8
reciprocally connected
8
pathways primary
8
parietal association
8
association cortex
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!