Actively transcribed regions of the genome are vulnerable to genomic instability. Recently, it was discovered that transcription is repressed in response to neighboring DNA double-strand breaks (DSBs). It is not known whether a failure to silence transcription flanking DSBs has any impact on DNA repair efficiency or whether chromatin remodelers contribute to the process. Here, we show that the PBAF remodeling complex is important for DSB-induced transcriptional silencing and promotes repair of a subset of DNA DSBs at early time points, which can be rescued by inhibiting transcription globally. An ATM phosphorylation site on BAF180, a PBAF subunit, is required for both processes. Furthermore, we find that subunits of the PRC1 and PRC2 polycomb group complexes are similarly required for DSB-induced silencing and promoting repair. Cancer-associated BAF180 mutants are unable to restore these functions, suggesting PBAF's role in repressing transcription near DSBs may contribute to its tumor suppressor activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157577PMC
http://dx.doi.org/10.1016/j.molcel.2014.06.028DOI Listing

Publication Analysis

Top Keywords

actively transcribed
8
transcribed regions
8
requirement pbaf
4
pbaf transcriptional
4
transcriptional repression
4
repair
4
repression repair
4
dna
4
repair dna
4
dna breaks
4

Similar Publications

Expression and characterization of the complete cyanophage genome PP in the heterologous host Synechococcus elongatus PCC 7942.

Int J Biol Macromol

January 2025

School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, PR China. Electronic address:

In this study, we successfully integrated the full-length genome of the cyanophage PP into the non-host cyanobacterium Synechococcus elongatus PCC 7942, facilitated by conjugation via Escherichia coli. To address the challenge posed by the toxic open reading frames (ORFs) of PP in E. coli, we first identified and characterized three toxic ORFs.

View Article and Find Full Text PDF

Melanoma-derived versican reactivates tumor-associated macrophages by upregulating pyruvate carboxylase through TLR2-MyD88-RelB axis under normoxia.

Acta Biochim Biophys Sin (Shanghai)

January 2025

International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518060, China.

Relieving hypoxia in the tumor microenvironment (TME) promotes innate and adaptive immunity. Our previous research demonstrated that reoxygenation of the TME promotes the phagocytosis and tumor-killing functions of tumor-associated macrophages (TAMs) by upregulating pyruvate carboxylase (PCB). However, the mechanism remains obscure.

View Article and Find Full Text PDF

Inovirus-Encoded Peptides Induce Specific Toxicity in .

Viruses

January 2025

Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.

is a common opportunistic pathogen associated with nosocomial infections. The primary treatment for infections typically involves antibiotics, which can lead to the emergence of multidrug-resistant strains. Therefore, there is a pressing need for safe and effective alternative methods.

View Article and Find Full Text PDF

Extrachromosomal circular DNAs (eccDNAs) has been found to be widespread and functional in various organisms. However, comparative analyses of pre- and post-infection of virus are rarely known. Herein, we investigated the changes in expression patterns of eccDNA following infection with cytoplasmic polyhedrosis virus (BmCPV) and explore the role of eccDNA in viral infection.

View Article and Find Full Text PDF

Application Strategies of Super-Enhancer RNA in Cardiovascular Diseases.

Biomedicines

January 2025

Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.

Cardiovascular diseases (CVDs) are a leading cause of death worldwide, and new therapeutic strategies are urgently needed. In recent years, enhancer RNAs (eRNAs) have gradually attracted attention because they offer new directions for the treatment of CVDs. Super-enhancer RNAs (seRNAs) are a subset of non-coding RNAs that are transcribed from regions of the genome known as super enhancers, which are large clusters of enhancers with a high density of transcription factors and cofactors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!