Purpose: The purpose of this in vitro study was to evaluate the effects of four surface treatments and two resin cements on the repair bond strength of a ceramic primer.

Materials And Methods: Eighty-eight pairs of disks (10 and 5 mm in diameter, 3 mm thickness) were prepared from heat-pressed feldspar ceramics (GC Initial IQ). After being stored in mucin-artificial saliva for 2 weeks, the 10-mm disks were divided into four surface treatment groups (n = 22) and then treated as follows: (1) no treatment (control); (2) 40% phosphoric acid; (3) 5% hydrofluoric acid + acid neutralizer + 40% phosphoric acid; (4) silica coating (CoJet-sand) + 40% phosphoric acid. The 5-mm disks were treated with 5% hydrofluoric acid + 40% phosphoric acid. The two sizes of porcelain disks, excluding the control group, were primed with Clearfil Ceramic Primer. The specimens in each group were further divided into two subgroups of 11 each, and bonded with Clearfil Esthetic Cement (CEC) or Panavia F 2.0 Cement (PFC). The specimens were stored in distilled water at 37°C for 24 hours, thermocycled for 3000 cycles at 5 to 55°C, and stored at 37°C for an additional 7 days. Shear bond strength (SBS) was measured with a universal testing machine at a 0.5 mm/min crosshead speed until fracture. Statistical analysis of the results was carried out with a two-way ANOVA and Tukey HSD test (α = 0.05). Debonded specimen surfaces were examined under an optical microscope to determine the mode of failure.

Results: The statistical analysis showed that the SBS was significantly affected by surface treatment and resin cement (p < 0.05). For treatment groups bonded with CEC, the SBS (MPa) values were (1) 2.64 ± 1.1, (2) 13.31 ± 3.6, (3) 18.88 ± 2.6, (4) 14.27 ± 2.7, while for treatment groups cemented with PFC, the SBS (MPa) values were (1) 3.04 ± 1.1, (2) 16.44 ± 3.3, (3) 20.52 ± 2.2, and (4) 16.24 ± 2.9. All control specimens exhibited adhesive failures, while mixed types of failures were observed in phosphoric acid-treated groups. The other groups revealed mainly cohesive and mixed failures.

Conclusions: Combined surface treatment of etching with hydrofluoric acid and phosphoric acid provides the highest bond strengths to porcelain. Also, PFC exhibited higher SBS than CEC did.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jopr.12194DOI Listing

Publication Analysis

Top Keywords

phosphoric acid
20
40% phosphoric
16
bond strength
12
surface treatment
12
treatment groups
12
hydrofluoric acid
12
acid
9
effects surface
8
surface treatments
8
statistical analysis
8

Similar Publications

Niobium-Containing Phosphate Glasses Prepared by the Liquid-Phase Method.

Int J Mol Sci

December 2024

Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.

Phosphate invert glasses (PIGs) have been attracting attention as materials for bone repair. PIGs have a high flexibility in chemical composition because they are composed of orthophosphate and pyrophosphate and can easily incorporate various ions in their glass networks. In our previous work, incorporation of niobium (Nb) into melt-quench-derived PIGs was effective in terms of controlling their ion release, and Nb ions promoted the activity of osteoblast-like cells.

View Article and Find Full Text PDF

Exploring the Biological Impact of β-TCP Surface Polarization on Osteoblast and Osteoclast Activity.

Int J Mol Sci

December 2024

Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Yushima, Tokyo 1138549, Japan.

β-tricalcium phosphate (β-TCP) is a widely utilized resorbable bone graft material, whose surface charge can be modified by electrical polarization. However, the specific effects of such a charge modification on osteoblast and osteoclast functions remain insufficiently studied. In this work, electrically polarized β-TCP with a high surface charge density was synthesized and evaluated in vitro in terms of its physicochemical properties and biological activity.

View Article and Find Full Text PDF

It was assumed that only autogenous bone had appropriate osteoconductive and osteoindutive properties for bone regeneration, but this assumption has been challenged. Many studies have shown that synthetic biomaterials must be considered as the best choice for guided bone regeneration. The objective of this work is to compare the performances of nanohydroxyapatite/β-tricalcium phosphate (n-HA/β-TCP) composite and autogenous bone grafting in bone regeneration applications.

View Article and Find Full Text PDF

Phosphate has been widely used in beef to improve processing characteristics such as tenderness and water-holding capacity. However, the effects of phosphates on the quality and especially the flavor of beef are not well understood. This study investigated the influence of eight different phosphate marinade solutions on the quality and flavor of prepared beef.

View Article and Find Full Text PDF

The emergence of RNA viruses driven by global population growth and international trade highlights the urgent need for effective antiviral agents that can inhibit viral replication. Nucleoside analogs, which mimic natural nucleotides, have shown promise in targeting RNA-dependent RNA polymerases (RdRps). Starting from protected 5-iodouridine, we report the synthesis of -substituted-(1,3-diyne)-uridines nucleosides and their phosphoramidate prodrugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!