The effectiveness of new a electron acceptor for organic solar cells is demonstrated. The acceptor is a homoleptic zinc(II) complex of 2,6-diphenylethynyl-1,3,7,9-tetraphenylazadipyrromethene. The high power-conversion efficiency obtained is attributed to the acceptor's 3D structure, which prevents crystallization and promotes a favourable nanoscale morphology, its high Voc , and its ability to contribute to light harvesting at 600-800 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201400647DOI Listing

Publication Analysis

Top Keywords

azadipyrromethene-based znii
4
znii complexes
4
complexes nonplanar
4
nonplanar conjugated
4
conjugated electron
4
electron acceptors
4
acceptors organic
4
organic photovoltaics
4
photovoltaics effectiveness
4
effectiveness electron
4

Similar Publications

The effectiveness of new a electron acceptor for organic solar cells is demonstrated. The acceptor is a homoleptic zinc(II) complex of 2,6-diphenylethynyl-1,3,7,9-tetraphenylazadipyrromethene. The high power-conversion efficiency obtained is attributed to the acceptor's 3D structure, which prevents crystallization and promotes a favourable nanoscale morphology, its high Voc , and its ability to contribute to light harvesting at 600-800 nm.

View Article and Find Full Text PDF

Small internal reorganization energy is desirable for high-performance optoelectronic materials, as it facilitates both charge separation and charge transport. However, only a handful of n-type electron accepting materials are known to have small reorganization energies. Here, DFT calculations were performed to predict the reorganization energy of azadipyrromethene-based dyes and their complexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!