A novel differential pulse voltammetry (DPV) method was developed for the simultaneous analysis of herbicides in water. A mixture of four herbicides, atrazine, simazine, propazine and terbuthylazine was analyzed simultaneously and the complex, overlapping DPV voltammograms were resolved by several chemometrics methods such as partial least squares (PLS), principal component regression (PCR) and principal component-artificial networks (PC-ANN). The complex profiles of the voltammograms collected from a synthetic set of samples were best resolved with the use of the PC-ANN method, and the best predictions of the concentrations of the analytes were obtained with the PC-ANN model (%RPET = 6.1 and average %Recovery = 99.0). The new method was also used for analysis of real samples, and the obtained results were compared well with those from the GC-MS technique. Such conclusions suggest that the novel method is a viable alternative to the other commonly used methods such as GC, HPLC and GC-MS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/03601234.2014.929480 | DOI Listing |
Environ Res
January 2025
Université de Caen Normandie, Alliance Sorbonne Université, MNHN, UA, CNRS, IRD, Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Esplanade de la Paix, 14032 Caen, France; MERSEA UR 7482, Université de Caen Normandie, Esplanade de la Paix, 14032 Caen, France.
Three French harbours connected to different water masses of the English Channel were chosen to investigate the hydrological parameters, chemical contaminants, and biofouling characteristics for 15 months. The biofouling development on two kinds of coatings, an anticorrosion coating (Epoxy) and a foul-release coating (FRC), was studied to compare micro- and macro- biofouling in harbour environments. Biofouling was investigated by considering wet biofouling biomass and composition, microalgae concentration, and bacterial abundance.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361005, China. Electronic address:
Due to the high toxicity and increasing consumption, efficient removal of phenoxyacetic acid herbicides (PAAHs) from water is imperative. In current study, a new adsorbent was prepared by modifying porous carbon derived from disused floral foam with chitosan (CS) (ACFC). Density functional theory (DFT) calculation uncovered that the amino and hydroxyl groups in the introduced CS played a critical role in the efficient adsorption of ACFC towards PAAHs.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Pediatrics, The Third Xiangya Hospital of Central South University, Changsha 410013, China. Electronic address:
Glyphosate, a widely used herbicide globally, has prompted concerns regarding its potential health impacts. This study aimed to explore the link between glyphosate exposure and renal function by combining NHANES, a zebrafish model, and metabolomics. A cross-sectional analysis of 2013-2014 NHANES data investigated the relationship between glyphosate exposure and renal function [albumin-to-creatinine ratio (ACR) and estimated glomerular filtration rate (eGFR)].
View Article and Find Full Text PDFSci Rep
January 2025
Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław, 50-370, Poland.
The presence of traces of herbicides in ground and surface waters can have adverse impacts on humans and the environment. Therefore, developing a highly selective and reusable adsorbent for monitoring water quality has become important. This article describes smart green molecularly imprinted polymers (MIPs) as selective sorbents of S-metolachlor herbicide for solid phase extraction (SPE).
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Faculty of Chemistry, M.V. Lomonosov Moscow State University, Leninsky Gory 1/3, 119991 Moscow, Russia.
2,4-Dichlorophenoxyacetic acid (2,4-D) is one of the popular herbicides that is widely used in agriculture and can be found in food and water. A rapid and sensitive fluorescence polarization immunoassay (FPIA) was proposed for the detection of 2,4-D in juice and water. New tracers, 2,4-D-buthylenediamin fluoresceinthiocarbamyl (2,4-D-BDF) and 2,4-D-glycine aminofluorescein (2,4-D-GAF), were obtained and characterized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!