Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Two cobalt imidazolate metal-organic frameworks were evaluated as a bactericidal material against the growth of the Gram-negative bacteria Pseudomonas putida and Escherichia coli. Under the most unfavourable conditions, within the exponential growth phase and in the culture media for both microorganisms, the growth inhibition reached over 50% for concentrations of biocidal material in the 5-10mgL(-1) range. The release of metal gives excellent durability with the antibacterial effect persisting after 3months. Both cobalt-based materials can be prepared with simple, cheap and easily accessible commercial ligands, leading to a more affordable possible future application as antimicrobial materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2014.05.029 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!