Non-native plants have invaded nearly all ecosystems and represent a major component of global ecological change. Plant invasions frequently change the composition and structure of vegetation communities, which can alter animal communities and ecosystem processes. We reviewed 87 articles published in the peer-reviewed literature to evaluate responses of arthropod communities and functional groups to non-native invasive plants. Total abundance of arthropods decreased in 62% of studies and increased in 15%. Taxonomic richness decreased in 48% of studies and increased in 13%. Herbivorous arthropods decreased in response to plant invasions in 48% of studies and increased in 17%, likely due to direct effects of decreased plant diversity. Predaceous arthropods decreased in response to invasive plants in 44% of studies, which may reflect indirect effects due to reductions in prey. Twenty-two percent of studies documented increases in predators, which may reflect changes in vegetation structure that improved mobility, survival, or web-building for these species. Detritivores increased in 67% of studies, likely in response to increased litter and decaying vegetation; no studies documented decreased abundance in this functional group. Although many researchers have examined effects of plant invasions on arthropods, sizeable information gaps remain, specifically regarding how invasive plants influence habitat and dietary requirements. Beyond this, the ability to predict changes in arthropod populations and communities associated with plant invasions could be improved by adopting a more functional and mechanistic approach. Understanding responses of arthropods to invasive plants will critically inform conservation of virtually all biodiversity and ecological processes because so many organisms depend on arthropods as prey or for their functional roles, including pollination, seed dispersal, and decomposition. Given their short generation times and ability to respond rapidly to ecological change, arthropods may be ideal targets for restoration and conservation activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cobi.12350 | DOI Listing |
J Ethnobiol Ethnomed
January 2025
Department of Biology, College of Natural and Computational Science, Arba Minch University, Arba Minch, Ethiopia.
Background: Homegardens (HGs) are well-time-honored traditional land use systems in small plots of land with purposely designed intricate structure and a mixture of planted vascular plants (VPs) for different purposes. Hence, the present study was initiated to investigate the ethnobotanical information of vascular plants of homegardens and their use, conservation and management practice by the people of Dawuro in southwestern Ethiopia.
Methods: A total of 162 farmer informants were selected and interviewed within a distance of < 2 km, 2-4 km and > 4 km between the natural forest and homegardens, and 0.
J Microsc
January 2025
The Sainsbury Laboratory, University of East Anglia, Norwich, UK.
Magnaporthe oryzae is the causal agent of rice blast, one of the most serious diseases affecting rice cultivation around the world. During plant infection, M. oryzae forms a specialised infection structure called an appressorium.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea.
Triple-negative breast cancer (TNBC) remains a challenging subtype due to its aggressive nature and limited treatment options. This study investigated the potential synergistic effects of Korean mistletoe lectin ( L. agglutinin, VCA) and cisplatin on MDA-MB-231 TNBC cells using both 2D and 3D culture models.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Key Laboratory of Agro-Environment in Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Centre for Modern Eco-Agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
, one of the world's most destructive invasive species, is known for causing significant ecological and economic harm. While extensive research has focused on its growth characteristics, secondary metabolites, and control measures, its chemical interactions with the environment-particularly the role of flavonoids in shaping soil microbial communities-remain underexplored. In this study, we identified and quantified ten flavonoids from root exudates using UPLC-MS, including Hispidulin, Isorhamnetin, and Mikanin.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea.
Invasive weed species exhibit both advantages, such as the potential for allelochemicals in bioherbicide development, and risks, including their threat to crop production. Therefore, this study aims to identify an allelochemical from , an invasive weed species. The dose-dependent effects of shoot and root extracts (SSE, SRE) on the signaling in the forage crop and germination in various weed species (, , , , and ) were evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!