In this paper, we describe relationships between the morphologies and the power conversion efficiencies (PCE) of perovskite photovoltaics having a conventional p-i-n heterojunction structure, indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS)/CH(3)NH(3)PbI(3-x)Cl(x)/PC(61)BM/Al. The PCE of such a device is highly dependent on the morphology of the perovskite film, which is governed by the concentrations of its precursors and the annealing conditions. A two-step annealing process allowed sufficient crystallization of the perovskite material, with a high coverage at a high precursor concentration. Relative to the device prepared using a one-step process (90 °C for 30 min), we observed a 60% increase in PCE for this optimized device. The corresponding devices exhibited extremely high stability after long-term storage (>1368 h) in the dark in a N2-filled glove box, with consistently high PCEs (AM 1.5 G, 100 mW cm(-2)) of up to 9.1%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4nr02751e | DOI Listing |
Nanomaterials (Basel)
January 2025
School of Aeronautical Engineering, Shandong Engineering Research Center of Aeronautical Materials and Devices, Shandong University of Aeronautics, Binzhou 256600, China.
Spray cooling, of which the essence is droplet impacting, is an efficient thermal management technique for dense electronic components in unmanned aerial vehicles (UAVs). Nanofluids are pointed as promising cooling dispersions. Since the nanofluids are unstable, a dispersant could be added to the fluid.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
The development of photoresponsive ferroelastics, which couple light-induced macroscopic mechanical and microscopic domain properties, represents a frontier in materials science with profound implications for advanced functional applications. In this study, we report the rational design and synthesis of two new organic-inorganic hybrid ferroelastic crystals, (MA)(MeN)[Fe(CN)(NO)] (MA = methylammonium) () and (MA)(MeNOH)[Fe(CN)(NO)] (), using a dual-organic molecular design strategy that exploits hydrogen-bonding interactions for tailoring ferroelastic properties. Specifically, exhibits a two-step phase transition at 138 and 242 K, while the introduction of a hydroxyl group in stabilizes its ferroelastic phase to a significantly higher temperature, achieving a phase transition at 328 K, 86 K above that of .
View Article and Find Full Text PDFNanoscale
January 2025
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
Ammonium perchlorate (AP) is widely utilized in aerospace, defense and other fields due to its high energy density, exceptional stability, easy availability and adaptability. However, the high sensitivity and hygroscopicity of AP severely constrain its application in numerous fields. In this study, a two-step continuous coating method was employed to construct AP-based energetic microcapsules with low sensitivity and hygroscopicity.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
Using photoswitchable molecules to manipulate supramolecular interactions under light illumination has driven advancements in numerous fields, allowing for the strategic alteration of molecular systems. However, integrating the moiety responsible for these interactions into the photochromic scaffold can be complex and may hamper the switching efficiency. We thus explored a simple class of organic molecules, namely thiosemicarbazones, featuring both a photoisomerizable C[double bond, length as m-dash]N double bond and a thiourea moiety capable of hydrogen bonding.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, P. R. China.
Efficient thermal generation from solar/electric energy in transparent films remains challenging due to the limited toolbox of high-performance thermal generation materials and methods for microstructure engineering. Here, we proposed a two-step strategy to introduce hierarchical wrinkles to the MXene composite films with high transparency, leading to upgraded photo/electrothermal conversion efficiency. Specifically, the thin film contains protic acid-treated MXene layers assembled with Ag nanowires (H-MXene/Ag NWs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!