Experiments on adult Wistar rats with streptozotocin-induced diabetes showed that antihyperglycemic activity of an original nootropic and neuroprotective drug Noopept (N-phenylacetyl-L-prolylglycine ethyl ester) is more pronounced under conditions of oral application than after intraperitoneal injection. These data provided a basis for studying the effect of Noopept on major indexes of the incretin system. Streptozotocin was shown to decrease the concentrations of incretin GLP-1 and insulin in the blood. Noopept had a normalizing effect on these parameters. This influence of Noopept was not related to the inhibition of a major enzyme metabolizing incretins (dipeptidyl peptidase IV). A reference drug sitagliptin also increased the contents of incretins and insulin, which was associated with the inhibition of dipeptidyl peptidase IV. It is known that GLP-1 increases NGF expression in the insular system. Our results suggest that the increase in incretin activity contributes to the antiapoptotic effect of Noopept on pancreatic β cells. The mechanism for an increase in blood GLP-1 level after oral application of Noopept requires further investigations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10517-014-2562-5DOI Listing

Publication Analysis

Top Keywords

incretin system
8
oral application
8
dipeptidyl peptidase
8
noopept
7
noopept normalizes
4
normalizes parameters
4
incretin
4
parameters incretin
4
system rats
4
rats experimental
4

Similar Publications

Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are gut-derived peptide hormones that potentiate glucose-dependent insulin secretion. The clinical development of GIP receptor (GIPR)-GLP-1 receptor (GLP-1R) multi-agonists exemplified by tirzepatide and emerging GIPR antagonist-GLP-1R agonist therapeutics such as maritide is increasing interest in the extra-pancreatic actions of incretin therapies. Both GLP-1 and GIP modulate inflammation, with GLP-1 also acting locally to alleviate gut inflammation in part through anti-inflammatory actions on GLP-1R+ intestinal intraepithelial lymphocytes.

View Article and Find Full Text PDF
Article Synopsis
  • Obesity and type 2 diabetes pose major public health issues that affect global health significantly.
  • The focus of effective treatments is shifting toward the central nervous system and how it regulates metabolism, especially using incretin-based medications.
  • This review aims to summarize the latest research on the neural pathways related to key receptors involved in metabolic control, specifically glucagon-like peptide-1, glucose-dependent insulinotropic polypeptide, and glucagon.
View Article and Find Full Text PDF

The classification of type 2 diabetes and prediabetes does not consider heterogeneity in the pathophysiology of glucose dysregulation. Here we show that prediabetes is characterized by metabolic heterogeneity, and that metabolic subphenotypes can be predicted by the shape of the glucose curve measured via a continuous glucose monitor (CGM) during standardized oral glucose-tolerance tests (OGTTs) performed in at-home settings. Gold-standard metabolic tests in 32 individuals with early glucose dysregulation revealed dominant or co-dominant subphenotypes (muscle or hepatic insulin-resistance phenotypes in 34% of the individuals, and β-cell-dysfunction or impaired-incretin-action phenotypes in 40% of them).

View Article and Find Full Text PDF

Objectives: This article compares metabolic, pancreatic, and gut-derived hormone responses to isomaltulose ingestion, before versus during submaximal sustained exercise, in adults with type 1 diabetes (T1D) using automated insulin delivery systems.

Methods: In a randomized, cross-over trial, eight participants with T1D being treated with automated insulin pumps (five females, age: 47 ± 16 years, BMI: 27.5 ± 3.

View Article and Find Full Text PDF

Localisation of the relaxin-family peptide 3 receptor to enteroendocrine cells of the intestine in RXFP3-Cre/tdTomato mice.

Biochem Pharmacol

December 2024

Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia.

The relaxin-family peptide 3 receptor (RXFP3) and its native ligand, relaxin-3, are expressed in specific populations of brain neurons, and research on this system has focused on its role in the central nervous system. However, some studies have indicated that relaxin-3 and RXFP3 are also expressed in peripheral organs, including the gut. In this study, we characterised the identity of RXFP3-expressing cells in the gastrointestinal tract, using RXFP3-Cre/tdTomato reporter mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!