A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionjhoj4vm7maj4tm9brnc3htu1uoqduvt5): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Homodimerization of RBPMS2 through a new RRM-interaction motif is necessary to control smooth muscle plasticity. | LitMetric

AI Article Synopsis

  • Smooth muscle cells in vertebrates can switch between two functions: contracting to help with movement and growing to heal or repair tissues.
  • A protein called RBPMS2 helps control this switching by interacting with specific molecules in the cell.
  • RBPMS2 has a special structure that allows it to connect with itself and other proteins, which is important for its role in helping smooth muscle cells change and function properly.

Article Abstract

In vertebrates, smooth muscle cells (SMCs) can reversibly switch between contractile and proliferative phenotypes. This involves various molecular mechanisms to reactivate developmental signaling pathways and induce cell dedifferentiation. The protein RBPMS2 regulates early development and plasticity of digestive SMCs by inhibiting the bone morphogenetic protein pathway through its interaction with NOGGIN mRNA. RBPMS2 contains only one RNA recognition motif (RRM) while this motif is often repeated in tandem or associated with other functional domains in RRM-containing proteins. Herein, we show using an extensive combination of structure/function analyses that RBPMS2 homodimerizes through a particular sequence motif (D-x-K-x-R-E-L-Y-L-L-F: residues 39-51) located in its RRM domain. We also show that this specific motif is conserved among its homologs and paralogs in vertebrates and in its insect and worm orthologs (CPO and MEC-8, respectively) suggesting a conserved molecular mechanism of action. Inhibition of the dimerization process through targeting a conserved leucine inside of this motif abolishes the capacity of RBPMS2 to interact with the translational elongation eEF2 protein, to upregulate NOGGIN mRNA in vivo and to drive SMC dedifferentiation. Our study demonstrates that RBPMS2 possesses an RRM domain harboring both RNA-binding and protein-binding properties and that the newly identified RRM-homodimerization motif is crucial for the function of RBPMS2 at the cell and tissue levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4150794PMC
http://dx.doi.org/10.1093/nar/gku692DOI Listing

Publication Analysis

Top Keywords

smooth muscle
8
noggin mrna
8
rrm domain
8
motif
7
rbpms2
6
homodimerization rbpms2
4
rbpms2 rrm-interaction
4
rrm-interaction motif
4
motif control
4
control smooth
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!