The zebrafish embryo (ZFE) is a promising non-rodent model in toxicology, and initial studies suggested its applicability in detecting hepatotoxic responses. Here, we hypothesize that the detailed analysis of underlying mechanisms of hepatotoxicity in ZFE contributes to the improved identification of hepatotoxic properties of new compounds and to the reduction of rodents used for screening. ZFEs were exposed to nine reference hepatotoxicants, targeted at induction of cholestasis, steatosis and necrosis, and two non-hepatotoxic controls. Histopathology revealed various specific morphological changes in the ZFE hepatocytes indicative of cell injury. Gene expression profiles of the individual compounds were generated using microarrays. Regulation of single genes and of pathways could be linked to hepatotoxic responses in general, but phenotype-specific responses could not be distinguished. Hepatotoxicity-associated pathways included xenobiotic metabolism and oxidoreduction related pathways. Overall analysis of gene expression identified a limited set of potential biomarkers specific for a common hepatotoxicity response. This set included several cytochrome P450 genes (cyp2k19, cyp4v7, cyp2aa3), genes related to liver development (pklr) and genes important in oxidoreduction processes (zgc:163022, zgc:158614, zgc:101858 and sqrdl). In conclusion, the ZFE model allows for identification of hepatotoxicants, without discrimination into specific phenotypes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2014.06.844DOI Listing

Publication Analysis

Top Keywords

gene expression
12
zebrafish embryo
8
hepatotoxic responses
8
expression markers
4
markers zebrafish
4
embryo reflect
4
hepatotoxic
4
reflect hepatotoxic
4
hepatotoxic response
4
response animal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!