In 2007 Capecchi, Evans, and Smithies received the Nobel Prize in recognition for discovering the principles for introducing specific gene modifications in mice via embryonic stem cells, a technology, which has revolutionized the field of biomedical science allowing for the generation of genetically engineered animals. Here we describe detailed protocols based on and developed from these ground-breaking discoveries, allowing for the modification of genes not only to create mutations to study gene function but additionally to modify genes with fluorescent markers, thus permitting the isolation of specific rare wild-type and mutant cell types for further detailed analysis at the biochemical, pathological, and genomic levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-1215-5_3 | DOI Listing |
FASEB J
January 2025
Department of Medicine, Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
Nuclear factor of activated T-cells 5 (NFAT5) is a transcription factor known for its role in osmotic stress adaptation in the renal inner medulla, due to the osmotic gradient that is generated between the renal cortex and renal inner medulla. However, its broader implications in kidney injury and chronic kidney disease (CKD) are less understood. Here we used two different Cre deleter mice (Ksp1.
View Article and Find Full Text PDFTissue Eng Regen Med
January 2025
Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea.
Background: Exogenous Cushing's syndrome, which results from prolonged glucocorticoid treatment, is associated with metabolic abnormalities. Previously, we reported the inhibitory effect of tonsil-derived mesenchymal stem cell conditioned medium (T-MSC CM) on glucocorticoid signal transduction. In this study, we investigated the therapeutic efficacy of T-MSCs in a mouse model of exogenous Cushing's syndrome.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243 122, Uttar Pradesh, India.
Background: Litter size in mice is an important fitness and economic feature that is controlled by several genes and influenced by non-genetic factors too. High positive selection pressure in each generation for Litter size at birth (LSB), resulted in the development of high and low prolific lines of inbred Swiss albino mice (SAM). Despite uniform management conditions, these lines showed variability in LSB across the generation.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
School of Graduate, Dalian Medical University, Dalian City, China.
Purpose: To investigate the effect of Ca2+/calmodulin-dependent protein kinase II (CAMKII) δ subtypes (CAMK2D) on sodium iodate (NaIO3)-induced retinal degeneration in mice.
Methods: Bioinformatics analysis and Western blot experiments were used to screen the significantly differentially expressed genes in age-related macular degeneration (AMD) disease. CAMK2D knockdown and overexpression models were constructed by lentivirus (LV) infection of adult retinal pigment epithelial cell line-19 (ARPE-19) cells in vitro.
mBio
January 2025
Department of Microbiology, UMass Chan Medical School, Worcester, Massachusetts, USA.
Unlabelled: (Mtb) exhibits an impressive ability to adapt to rapidly changing environments, despite its genome's apparent stability. Recently, phase variation through indel formation in homopolymeric tracts (HT) has emerged as a potentially important mechanism promoting adaptation in Mtb. This study examines the impact of common phase variants associated with the ESX-1 type VII secretion system, focusing on a highly variable HT upstream of the ESX-1 regulatory factor, .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!