Magnetic Fe₃ O ₄ nanoparticles grafted with single-chain antibody (scFv) and docetaxel loaded β-cyclodextrin potential for ovarian cancer dual-targeting therapy.

Mater Sci Eng C Mater Biol Appl

Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China. Electronic address:

Published: September 2014

In order to improve the therapeutic efficiency and reduce the side effects on nonpathological cells and tissues, targeting drug delivery systems have gained more and more attraction. Here, we report a novel dual-targeting drug delivery system for ovarian cancer therapy. The inner core was made of iron oxide (Fe3O4) nanoparticles, synthesized by co-precipitation method. It was further surface-functionalized with amine groups to link single-chain antibody (scFv) and β-cyclodextrin (β-CD). Docetaxel (TXT) was finally included in the grafted β-CD. FTIR and XPS confirmed the reactions. SEM found that the diameters of these Fe3O4 nanoparticles before and after functionalization were around 40 nm. Magnetization test showed that these particles were superparamagnetic. The in vitro release of TXT was concentration-driven and sustained, depending on the renewal rate of release medium. The in vitro flow chamber experiment revealed its magnetic targeting property; modified ELISA and static binding experiments displayed its good affinity to Endoglin, indicating that our drug delivery system has the potential to be dual-targeted to ovarian cancer tissue by externally applied magnetic field and native active binding of grafted scFv to Endoglin, overexpressed by ovarian cancer tissue. MTT assays showed that the TXT released from this drug delivery system continuously inhibited the growth of Skov3 ovarian cancer cells in 72h, better than the control raw TXT. All these results demonstrated a promising dual-targeting drug delivery system with great potential for ovarian cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2014.05.041DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
24
drug delivery
20
delivery system
16
single-chain antibody
8
antibody scfv
8
potential ovarian
8
dual-targeting drug
8
cancer therapy
8
fe3o4 nanoparticles
8
cancer tissue
8

Similar Publications

Endometrial cancer (EC) is a common gynecological malignancy for which polycystic ovarian syndrome (PCOS) has been identified as a significant risk factor. Quercetin, a widely distributed natural flavonoid, has demonstrated potential therapeutic effects in managing both PCOS and EC. However, the specific molecular targets of quercetin in the context of PCOS comorbid with EC (PCOS-EC) remain poorly defined.

View Article and Find Full Text PDF

Background: Risk reducing mastectomy (RRM) is an option for women with pathogenic germline variants in BRCA1 or BRCA2 (BRCA1/2). This study investigates and compares RRM-uptake among Norwegian BRCA1/2 carriers from 2008 to 2021, temporal trends, and incidence of breast cancer (BC) after surgery.

Methods: BRCA1/2 carriers without prior breast or ovarian cancer, tested at Oslo University Hospital between January 1st 2008 and December 31st 2021 were included in the study.

View Article and Find Full Text PDF

Enterolactone combined with m6A Reader IGF2BP3 inhibits malignant angiogenesis and disease progression in ovarian cancer.

Phytomedicine

December 2024

Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, 150081, China; Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China; Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, T2N 4N1, Canada. Electronic address:

Background: Among all gynecological cancers, ovarian cancer is the leading cause of death. Epithelial ovarian cancer (EOC) accounts for over 85 % of ovarian cancer cases and is characterized by insidious onset, early metastasis, and a high recurrence rate. Alterations in gut microbiota, often as a consequence of chemotherapy, can promote cancer development and exacerbate the disease.

View Article and Find Full Text PDF

Prognostic significance of serum complement activation, neutrophil extracellular traps and extracellular DNA in newly diagnosed epithelial ovarian cancer.

Gynecol Oncol

January 2025

Departments of Internal Medicine and Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States of America; Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States of America.

Purpose: We observed that the tumor microenvironment (TME) in metastatic epithelial ovarian cancer (EOC) and in other solid tumors can reprogram normal neutrophils to acquire a complement-dependent suppressor phenotype characterized by inhibition of stimulated T cell activation. This study aims to evaluate whether serum markers of neutrophil activation and complement at diagnosis of EOC would be associated with clinical outcomes.

Experimental Design: We conducted a two-center prospective study of patients with newly diagnosed EOC (N = 188).

View Article and Find Full Text PDF

Objective: Therapeutic interventions for epithelial ovarian cancer (EOC) have increased greatly over the last decade but improvements outside of biomarker selected therapies have been limited. There remains a pressing need for more effective treatment options that can prolong survival and enhance the quality of life of patients with EOC. In contrast to the significant benefits of immunotherapy with immune checkpoint inhibitors (CPI) seen in many solid tumors, initial experience in EOC suggests limited efficacy of CPIs monotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!