Mammalian experiments provide clear evidence of male line transgenerational effects on health and development from paternal or ancestral early-life exposures such as diet or stress. The few human observational studies to date suggest (male line) transgenerational effects exist that cannot easily be attributed to cultural and/or genetic inheritance. Here we summarise relevant studies, drawing attention to exposure sensitive periods in early life and sex differences in transmission and offspring outcomes. Thus, variation, or changes, in the parental/ancestral environment may influence phenotypic variation for better or worse in the next generation(s), and so contribute to common, non-communicable disease risk including sex differences. We argue that life-course epidemiology should be reframed to include exposures from previous generations, keeping an open mind as to the mechanisms that transmit this information to offspring. Finally, we discuss animal experiments, including the role of epigenetic inheritance and non-coding RNAs, in terms of what lessons can be learnt for designing and interpreting human studies. This review was developed initially as a position paper by the multidisciplinary Network in Epigenetic Epidemiology to encourage transgenerational research in human cohorts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157403 | PMC |
http://dx.doi.org/10.1136/jmedgenet-2014-102577 | DOI Listing |
Commun Biol
January 2025
Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, University Drive Lethbridge, Lethbridge, AB, Canada.
Prenatal maternal stress (PNMS) determines lifetime mental and physical health. Here, we show in rats that PNMS has consequences for placental function and fetal brain development across four generations (F0-F3). Using a systems biology approach, comprehensive DNA methylation (DNAm), miRNA, and mRNA profiling revealed a moderate impact of PNMS in the F1 generation, but drastic changes in F2 and F3 generations, suggesting compounding effects of PNMS with each successive generation.
View Article and Find Full Text PDFACS Nano
January 2025
School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200241, China.
Undifferentiated spermatogonia (Undiff-SPG) plays a critical role in maintaining continual spermatogenesis. However, the toxic effects and molecular mechanisms of maternal exposure to nanoplastics on offspring Undiff-SPG remain elusive. Here, we utilized a multiomics combined cytomorphological approach to explore the reproductive toxicity and mechanisms of polystyrene nanoplastics (PS-NPs) on offspring Undiff-SPG in mice after maternal exposure.
View Article and Find Full Text PDFSemin Reprod Med
January 2025
Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan.
Per- and polyfluoroalkyl substances (PFASs) are persistent environmental contaminants found in human tissues and persist in the environment, posing significant risks to reproductive health. This review examines the impact of PFAS exposure on male reproductive health, with a focus on sperm epigenetics. PFASs disrupt endocrine function by altering key reproductive hormones and impairing sperm motility, quality, and viability.
View Article and Find Full Text PDFSci Rep
January 2025
Stanford Department of Pediatrics, Division of Neonatology, 453 Quarry Rd, Palo Alto, CA, USA.
Maternal obesity increases risk for bronchopulmonary dysplasia (BPD) by up to 42%. Identifying metabolic features that may contribute to the association between maternal pre-pregnancy body mass index (BMI) and BPD is critical in defining the molecular relationship between these conditions. We investigated the association between maternal obesity and BPD using newborn screen metabolites as an explanatory variable.
View Article and Find Full Text PDFNat Rev Urol
January 2025
Discipline of Biological Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia.
Multiple conditions can cause hypoxia in the testis, including exposure to high altitude, sleep apnoea, testicular torsion and varicocele. Varicocele accounts for up to 44% of instances of primary infertility, but the cumulative contribution of hypoxic conditions to male infertility is undefined. Results of controlled hypobaric hypoxia studies have demonstrated a substantial detrimental effect of short-term and long-term exposures on sperm; however, downstream effects on embryo development and offspring health are less well understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!