The interaction between the Fermi sea of conduction electrons and a nonadiabatic attractive impurity potential can lead to a power-law divergence in the tunneling probability of charge through the impurity. The resulting effect, known as the Fermi edge singularity (FES), constitutes one of the most fundamental many-body phenomena in quantum solid state physics. Here we report the first observation of FES for Dirac fermions in graphene driven by isolated Coulomb impurities in the conduction channel. In high-mobility graphene devices on hexagonal boron nitride substrates, the FES manifests in abrupt changes in conductance with a large magnitude ≈e(2)/h at resonance, indicating total many-body screening of a local Coulomb impurity with fluctuating charge occupancy. Furthermore, we exploit the extreme sensitivity of graphene to individual Coulomb impurities and demonstrate a new defect-spectroscopy tool to investigate strongly correlated phases in graphene in the quantum Hall regime.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.113.026601 | DOI Listing |
Phys Chem Chem Phys
January 2025
College of Mechanics and Engineering Science, Hohai University, Nanjing, 211100, China.
Driven by the pressing demand for integration and miniaturization within the terahertz (THz) spectrum, this research introduces an innovative approach to construct chiral structures using dichroism as the target function. This initiative aims to tackle the prevalent issues of single-functionality, narrow application scope, and intricate design in conventional metasurfaces. The proposed multifunctional tunable metasurface employs a graphene-metal hybrid structure to address the critical constraints found in existing designs.
View Article and Find Full Text PDFACS Nano
January 2025
Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
Thermally driven membrane desalination processes have garnered significant interest for their potential in the treatment of hypersaline wastewater. However, achieving high rejection rates for volatiles while maintaining a high water flux remains a considerable challenge. Herein, we propose a thermo-osmosis-evaporation (TOE) system that utilizes molecular intercalation-regulated graphene oxide (GO) as the thermo-osmotic selective permeation layer, positioned on a hydrophobic poly(vinylidene fluoride) fibrous membrane serving as the thermo-evaporation layer.
View Article and Find Full Text PDFMater Horiz
January 2025
Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
Bionic evaporators inspired by natural plants like bamboo and mushrooms have emerged as efficient generators through water capillary evaporation. However, primitive natural evaporators cannot currently meet growing demand, and their performance limitations remain largely unexplored, presenting a substantial challenge. Through extensive experimentation and detailed simulation analysis, this study presents a precisely engineered H-type bamboo steam generator.
View Article and Find Full Text PDFFood Chem
January 2025
School of Food and Biological Engineering, Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China. Electronic address:
Ultra-precision point-of-care detection of Escherichia coli O157:H7 in foods is an important issue. Here, the detection sensitivity was improved by a signal cascade amplification strategy synergised by exonuclease III assisted isothermal amplification and reverse magnetic strategy. The double-stranded DNA formed by the aptamer and the target DNA as a sensing switch, avoiding the complex process of specific nucleic acid extraction.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea.
An energy crisis, resulting from rapid population growth and advancements in the Internet of Things, has increased the importance of energy management strategies. Conventionally, energy management is conducted using sensors; however, additional energy is required to maintain sensor operation within these systems. Herein, an all-fiber-based triboelectric nanogenerator with O plasma treatment, graphene oxide/tannic acid solution coating, and hexane/1-octadecanethiol solution coating (AFT-OGH) is fabricated to implement a self-powered sensor, generating a high electrical power density, of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!