Aberrant activation of EGFR in human cancers promotes tumorigenesis through stimulation of AKT signaling. Here, we determined that the discoidina neuropilin-like membrane protein DCBLD2 is upregulated in clinical specimens of glioblastomas and head and neck cancers (HNCs) and is required for EGFR-stimulated tumorigenesis. In multiple cancer cell lines, EGFR activated phosphorylation of tyrosine 750 (Y750) of DCBLD2, which is located within a recently identified binding motif for TNF receptor-associated factor 6 (TRAF6). Consequently, phosphorylation of DCBLD2 Y750 recruited TRAF6, leading to increased TRAF6 E3 ubiquitin ligase activity and subsequent activation of AKT, thereby enhancing EGFR-driven tumorigenesis. Moreover, evaluation of patient samples of gliomas and HNCs revealed an association among EGFR activation, DCBLD2 phosphorylation, and poor prognoses. Together, our findings uncover a pathway in which DCBLD2 functions as a signal relay for oncogenic EGFR signaling to promote tumorigenesis and suggest DCBLD2 and TRAF6 as potential therapeutic targets for human cancers that are associated with EGFR activation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151226 | PMC |
http://dx.doi.org/10.1172/JCI73093 | DOI Listing |
FASEB J
September 2022
Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China.
DCBLD2 is a neuropilin-like transmembrane protein that is up-regulated during arterial remodeling in humans, rats, and mice. Activation of PDGFR-β via PDGF triggers receptor phosphorylation and endocytosis. Subsequent activation of downstream signals leads to the stimulation of phenotypic conversion of VSMCs and arterial wall proliferation, which are common pathological changes in vascular remodeling diseases such as atherosclerosis, hypertension, and restenosis after angioplasty.
View Article and Find Full Text PDFCancers (Basel)
March 2021
The School of Medicine, Nankai University, Tianjin 300071, China.
Growing evidence suggests that cisplatin and other chemotherapeutic agents promote tumor metastasis while inhibiting tumor growth, which is a critical issue for certain patients in clinical practices. However, the role of chemotherapeutics in promoting tumor metastasis and the molecular mechanism involved are unclear. Here, we investigated the roles of cisplatin in promoting tumor metastasis in lung adenocarcinoma (LUAD).
View Article and Find Full Text PDFMol Cell Proteomics
October 2020
Department of Biology, University of Vermont, Marsh Life Sciences, Burlington, Vermont, USA. Electronic address:
The Discoidin, CUB, and LCCL domain-containing protein (DCBLD) family consists of two type-I transmembrane scaffolding receptors, DCBLD1 and DCBLD2, which play important roles in development and cancer. The nonreceptor tyrosine kinases FYN and ABL are known to drive phosphorylation of tyrosine residues in YXXP motifs within the intracellular domains of DCBLD family members, which leads to the recruitment of the Src homology 2 (SH2) domain of the adaptors CT10 regulator of kinase (CRK) and CRK-like (CRKL). We previously characterized the FYN- and ABL-driven phosphorylation of DCBLD family YXXP motifs.
View Article and Find Full Text PDFBiochem J
November 2017
Department of Biology, University of Vermont, 109 Carrigan Drive, 120A Marsh Life Sciences, Burlington, VT 05405, U.S.A.
Discoidin, CUB, and LCCL domain containing 2 (DCBLD2) is a neuropilin-like transmembrane scaffolding receptor with known and anticipated roles in vascular remodeling and neuronal positioning. DCBLD2 is also up-regulated in several cancers and can drive glioblastomas downstream of activated epidermal growth factor receptor. While a few studies have shown either a positive or negative role for DCBLD2 in regulating growth factor receptor signaling, little is known about the conserved signaling features of DCBLD family members that drive their molecular activities.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
May 2016
Section of Cardiovascular Medicine and Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut; Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut;
Insulin effects on cell metabolism, growth, and survival are mediated by its binding to, and activation of, insulin receptor. With increasing prevalence of insulin resistance and diabetes there is considerable interest in identifying novel regulators of insulin signal transduction. The transmembrane protein endothelial and smooth muscle cell-derived neuropilin-like protein (ESDN) is a novel regulator of vascular remodeling and angiogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!