Treatment of cytochrome P-450scc with fluorescein isothiocyanate (FITC) resulted in covalent labeling with 1.0 +/- 0.1 eq of FITC. Reverse-phase high performance liquid chromatography of tryptic and chymotryptic digests of the labeled protein revealed that a single FITC-labeled peptide accounted for 75% of the label. This peptide was found to be specifically labeled at lysine 338 by amino acid sequencing. The modification of lysine 338 with FITC resulted in 85 +/- 15% inhibition of adrenodoxin binding to cytochrome P-450scc. In a complementary experiment it was found that if a complex between adrenodoxin and native cytochrome P-450scc was formed in the presence of cholesterol and then treated with FITC, there was almost no labeling of lysine 338. The modification of lysine 338 by FITC was not inhibited by 22(R)-hydroxycholesterol, the first intermediate in the side chain cleavage reaction which binds to the active site 300 times more tightly than cholesterol itself. These experiments suggest that lysine 338 is located at the binding site for adrenodoxin and electrostatically interacts with one of the carboxylate groups on adrenodoxin that has been implicated in binding. The fluorescence emission of the FITC label on cytochrome P-450scc was only 14% as large as that of an equivalent concentration of FITC-labeled bovine serum albumin, suggesting that it was quenched by Forster energy transfer to the heme group.
Download full-text PDF |
Source |
---|
Sci Rep
January 2025
ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
The mutant waxy allele (wx1) is responsible for increased amylopectin in maize starch, with a wide range of food and industrial applications. The amino acid profile of waxy maize resembles normal maize, making it particularly deficient in lysine and tryptophan. Therefore, the present study explored the combined effects of genes governing carbohydrate and protein composition on nutritional profile and kernel physical properties by crossing Quality Protein Maize (QPM) (o2o2/wx1wx1) and waxy (o2o2/wx1wx1) parents.
View Article and Find Full Text PDFBehav Brain Res
January 2025
Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China. Electronic address:
Objective: Observational studies suggest CSF metabolites may be linked to Parkinson's disease (PD) onset, but causality is uncertain. This study uses a two-sample bidirectional Mendelian randomization approach to investigate the causal relationship between CSF metabolites and PD.
Methods: Data on 338 CSF metabolites and PD-related traits were obtained from genome-wide association studies (GWAS).
Animal
January 2025
Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Scheldeweg 68, 9090 Melle, Belgium. Electronic address:
Lysine, often referred to as the 'first limiting amino acid' in pig nutrition, plays a pivotal role in growth performance. Variability in lysine requirements arises due to factors such as age, sex and environmental conditions. Optimising pig health and production efficiency and minimising nitrogen excretion require accurate knowledge of estimated lysine requirements accounting for factors such as genetics, feeding practices, scientific advancements, and environmental considerations.
View Article and Find Full Text PDFChem Sci
December 2024
LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris 91120 Palaiseau France
Photoreduction of oxidized flavins has a functional role in photocatalytic and photoreceptor flavoproteins. In flavoproteins without light-dependent physiological functions, ultrafast, reversible flavin photoreduction is supposedly photoprotective by nature, and holds potential for nonnatural photocatalytic applications. In this work, we combine protein mutagenesis, ultrafast spectroscopy, molecular dynamics simulations and quantum mechanics calculations to investigate the nonfunctional flavin photoreduction in a flavoenzyme, lysine-specific demethylase 1 (LSD1) which is pivotal in DNA transcription.
View Article and Find Full Text PDFEpilepsia Open
November 2024
Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
Objectives: While metabolic imbalances have been observed in individuals with epilepsy, the direct involvement of specific metabolites in the development of the condition remains underexplored. A comprehensive analysis of the causality between cerebrospinal fluid metabolites (CSF) and epilepsy is pivotal in discovering innovative therapeutic interventions and prophylactic approaches.
Methods: Summary data from genome-wide association studies (GWAS) of CSF metabolites and epilepsy subtypes were obtained separately.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!