Background: Blocking vascular endothelial growth factor (VEGF) mediated tumor angiogenesis by phytochemicals has emerged as an attractive strategy for cancer prevention and therapy.
Methods: We investigated the anti-angiogenic effects of ellagic acid in a hamster model of oral oncogenesis by examining the transcript and protein expression of hypoxia-inducible factor-1alpha (HIF-1α), VEGF, VEGFR2, and the members of the PI3K/Akt and MAPK signaling cascades. Molecular docking studies and cell culture experiments with the endothelial cell line ECV304 were performed to delineate the mechanism by which ellagic acid regulates VEGF signaling.
Results: We found that ellagic acid significantly inhibits HIF-1α-induced VEGF/VEGFR2 signalling in the hamster buccal pouch by abrogating PI3K/Akt and MAPK signaling via downregulation of PI3K, PDK-1, p-Akt(ser473), mTOR, p-ERK, and p-JNK. Ellagic acid was also found to reduce the expression of histone deacetylases that could inhibit neovascularization. Analysis of the mechanism revealed that ellagic acid inhibits hypoxia-induced angiogenesis via suppression of HDAC-6 in ECV304 cells. Furthermore, knockdown of endogenous HDAC6 via small interfering RNA abrogated hypoxia-induced expression of HIF-1α and VEGF and blocked Akt activation. Molecular docking studies confirmed interaction of ellagic acid with upstream kinases that regulate angiogenic signaling.
Conclusions: Taken together, these findings demonstrate that the anti-angiogenic activity of ellagic acid may be mediated by abrogation of hypoxia driven PI3K/Akt/mTOR, MAPK and VEGF/VEGFR2 signaling pathways involving suppression of HDAC6 and HIF-1α responses.
General Significance: Ellagic acid offers promise as a lead compound for anticancer therapeutics by virtue of its ability to inhibit key oncogenic signaling cascades and HDACs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1871520614666140723114217 | DOI Listing |
Toxicol Appl Pharmacol
January 2025
Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:
Breast cancer (BC) is a leading cause of cancer-related mortality among women worldwide, with incidence rates rising globally. Urolithin B (UB), a bioactive metabolite of ellagic acid, has demonstrated promising anticancer effects in various cancer models. This study aimed to evaluate the effects of UB on the growth, angiogenesis, and metastasis of BC cells using both in vivo and in vitro approaches.
View Article and Find Full Text PDFBiomaterials
December 2024
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China. Electronic address:
In recent years, there has been growing interest in understanding the role of bacteria within tumors and their potential as targets for cancer therapy. In this work, we developed an ellagic acid (EA) - endogenous protein (eP) nanocomposite (eP-EA) to target tumors by EPR (enhanced permeability and retention), kill bacteria within tumors to regulate anti-tumor immune responses. The potential mechanism of eP-EA treatment is associated with the reduced abundance and diversity of microorganisms within the tumor, culminating with an altered metabolism within the Tumor microenvironment (TME).
View Article and Find Full Text PDFFood Chem
December 2024
Departamento de Nutrición y Dietética, Escuela de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile.. Electronic address:
Background: Pomegranate peel extract (PPE) is rich in polyphenols, notably punicalagin and ellagic acid, but is sensitive to environmental degradation and has low bioavailability. Microencapsulation can enhance PPE stability and bioaccessibility, making it suitable for functional foods like jelly gummies (JG). JG containing microencapsulated PPE (MPPE) have not been studied.
View Article and Find Full Text PDFBiomed Chromatogr
February 2025
School of Life Sciences, Anhui University, Hefei, Anhui, China.
The objective of this study is to comprehensively to identify the core pharmacological components and their respective targets of three medicinal fungi Sanghuangs including Sanghuangporus vaninii (SV), Sanghuangporus lonicericola (SL), and Inonotus hispidus (IH). Metabolomics analysis indicated that a total of 495 and 660 differential metabolites were obtained in mycelium and fermentation broth samples among three Sanghuangs, respectively. The network pharmacology analysis showed that 6-[1]-ladderane hexanol, R-nostrenol, candidone, ellagic acid, and quercetin were the overlapping active ingredients of three Sanghuang species for diabetes mellitus, immune system disease, and neoplasm.
View Article and Find Full Text PDFCardiovasc Ther
January 2025
Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK.
The research is aimed at exploring the potential of marigold petal tea (MPT), rich in polyphenol contents, against oxidative stress and obesity in a rat model following a high-fat-sugar diet (HFSD). The MPT was prepared through the customary method of decoction and was subjected to analysis for its polyphenol composition using reversed-phase high-performance liquid chromatography (RP-HPLC). Two specific doses of MPT, namely, 250 and 500 mg/kg body weight (BW), were chosen for the study-referred to as MPT-250 and MPT-500, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!