Because of the size of the nanoparticles, their detection and exact anatomical localization in tissue samples are very difficult. Consequently, suitable methods are needed to prove their presence, especially co-localized to histological lesions. Therefore, the aim of this study was to investigate whether nanoparticles were detectable in specimens after reprocessing samples from glass slides using the pop-off technique. Tissue slides containing agglomerates of titanium dioxide nanoparticles already visible on a light microscopic level and amorphous silicium dioxide (SiO2) particles not observable in tissue slides were reprocessed. Furthermore, cytospots of bronchoalveolar lavage acquired from rats that previously inhaled carbon nanotubes were used. After reprocessing the samples, they were investigated using transmission electron microscopy. In all the reprocessed samples, the respective nanoparticles were detectable. Even the light microscopically invisible amorphous SiO2 particles were observed as electron dense structures. Titanium and silicium were additionally confirmed in the respective nanoparticles by energy-dispersive X-ray spectroscopy (EDX). In summary, the pop-off technique represents a fast and easy way to detect nanoparticles in histological sections. This enables further characterization of these particles by additional techniques such as EDX, and their direct correlation with light microscopic lesions at exactly the same location is investigated.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0192623313509906DOI Listing

Publication Analysis

Top Keywords

pop-off technique
12
electron microscopy
8
nanoparticles detectable
8
reprocessing samples
8
tissue slides
8
light microscopic
8
sio2 particles
8
respective nanoparticles
8
nanoparticles
7
nanoparticles pop-off
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!