Annotation of the zebrafish genome through an integrated transcriptomic and proteomic analysis.

Mol Cell Proteomics

From the *Institute of Bioinformatics, International Technology Park, Bangalore 560 066, India; ¶McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205; **Departments of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205

Published: November 2014

Accurate annotation of protein-coding genes is one of the primary tasks upon the completion of whole genome sequencing of any organism. In this study, we used an integrated transcriptomic and proteomic strategy to validate and improve the existing zebrafish genome annotation. We undertook high-resolution mass-spectrometry-based proteomic profiling of 10 adult organs, whole adult fish body, and two developmental stages of zebrafish (SAT line), in addition to transcriptomic profiling of six organs. More than 7,000 proteins were identified from proteomic analyses, and ∼ 69,000 high-confidence transcripts were assembled from the RNA sequencing data. Approximately 15% of the transcripts mapped to intergenic regions, the majority of which are likely long non-coding RNAs. These high-quality transcriptomic and proteomic data were used to manually reannotate the zebrafish genome. We report the identification of 157 novel protein-coding genes. In addition, our data led to modification of existing gene structures including novel exons, changes in exon coordinates, changes in frame of translation, translation in annotated UTRs, and joining of genes. Finally, we discovered four instances of genome assembly errors that were supported by both proteomic and transcriptomic data. Our study shows how an integrative analysis of the transcriptome and the proteome can extend our understanding of even well-annotated genomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4223501PMC
http://dx.doi.org/10.1074/mcp.M114.038299DOI Listing

Publication Analysis

Top Keywords

zebrafish genome
12
transcriptomic proteomic
12
integrated transcriptomic
8
protein-coding genes
8
proteomic
6
genome
5
transcriptomic
5
annotation zebrafish
4
genome integrated
4
proteomic analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!