Background: Intracellular signaling pathways involved in skeletal myosin heavy chain (MyHC) isoform alterations during heart failure (HF) are not completely understood. We tested the hypothesis that diaphragm expression of mitogen-activated protein kinases (MAPK) and myogenic regulatory factors is changed in rats with myocardial infarction (MI) induced HF.

Methods: Six months after MI rats were subjected to transthoracic echocardiography. After euthanasia, infarcted rats were subdivided in MI/HF- group (with no HF evidence; n=10), and MI/HF+ (with right ventricular hypertrophy and lung congestion; n=10). Sham-operated rats were used as controls (n=10). MyHC isoforms were analyzed by electrophoresis.

Statistical Analysis: ANOVA and Pearson correlation.

Results: MI/HF- had left cardiac chambers dilation with systolic and diastolic left ventricular dysfunction. Cardiac injury was more intense in MI/HF+ than MI/HF-. MyHC I isoform percentage was higher in MI/HF+ than MI/HF-, and IIb isoform lower in MI/HF+ than Sham. Left atrial diameter-to-body weight ratio positively correlated with MyHC I (p=0.005) and negatively correlated with MyHC IIb (p=0.02). TNF-α serum concentration positively correlated with MyHC I isoform. Total and phosphorylated ERK was lower in MI/HF- and MI/HF+ than Sham. Phosphorylated JNK was lower in MI/HF- than Sham. JNK and p38 did not differ between groups. Expression of NF-κB and the myogenic regulatory factors MyoD, myogenin, and MRF4 was similar between groups.

Conclusion: Diaphragm MyHC fast-to-slow shift is related to cardiac dysfunction severity and TNF-α serum levels in infarcted rats. Reduced ERK expression seems to participate in MyHC isoform changes. Myogenic regulatory factors and NF-κB do not modulate diaphragm MyHC distribution during chronic HF.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000363003DOI Listing

Publication Analysis

Top Keywords

myhc isoform
16
myogenic regulatory
12
regulatory factors
12
correlated myhc
12
myhc
9
infarcted rats
8
mi/hf+ mi/hf-
8
mi/hf+ sham
8
positively correlated
8
tnf-α serum
8

Similar Publications

Introduction: Down syndrome (DS) is associated with difficulties with feeding during infancy and childhood. Weaning, or transitioning from nursing to independent deglutition, requires developmental progression in tongue function. However, little is known about whether postnatal tongue muscle maturation is impacted in DS.

View Article and Find Full Text PDF

This study assessed postmortem proteolysis over 14 d in bovine Masseter (MS), Longissimus thoracis (LT), and Cutaneous trunci (CT) muscles. First, the metabolic, contractile, and connective tissue properties were characterized to establish their intrinsic differences. The MS contained the highest levels of oxidative markers and myosin heavy chain-I (MyHC-I), whereas the CT possessed the greatest glycolytic capacity, MyHC-IIx, and connective tissue proteins (P < 0.

View Article and Find Full Text PDF

FHL3 gene regulates bovine skeletal muscle cell growth through the PI3K/Akt/mTOR signaling pathway.

Comp Biochem Physiol Part D Genomics Proteomics

December 2024

College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China. Electronic address:

Beef quality is a critical factor in evaluating the effectiveness of beef cattle production. Fiber types play key roles in determining muscle growth and meat quality characteristics. FHL3 is de novo expressed in skeletal muscle and is responsible for MyHC isoform expression in C2C12 cells.

View Article and Find Full Text PDF

Objective: We investigated myosin heavy chain (MyHC) isoform expression at early postnatal stages of clinically and genetically confirmed spinal muscular atrophy type 1 (SMA1) patients, in order to study the muscle fibre differentiation compared to age-matched controls at single fibre level.

Methods: Open skeletal muscle biopsies were performed from the quadriceps muscle in four SMA1 patients and three age-matched controls. Standard techniques were used for immunohistochemistry of embryonic and foetal MyHCs.

View Article and Find Full Text PDF

Human studies examining the cellular mechanisms behind sarcopenia, or age-related loss of skeletal muscle mass and function, have produced inconsistent results. A systematic review and meta-analysis were performed to determine the aging effects on protein expression, size, and distribution of fibers with various myosin heavy chain (MyHC) isoforms. Study eligibility included MyHC comparisons between young (18-49 yr) and older (≥60 yr) adults, with 27 studies identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!