Alpha-mangostin promotes myoblast differentiation by modulating the gene-expression profile in C2C12 cells.

Biosci Biotechnol Biochem

a Research and Development Division , Kikkoman Corporation , Noda , Japan.

Published: August 2015

Alpha-mangostin, a xanthone contained mostly in mangosteen pericarp, has been reported to exert various biological functions. However, little is known about involvement of this xanthone in the muscle differentiation process. Here, we report the effect of α-mangostin on murine skeletal muscle-derived C2C12 myoblasts. α-mangostin stimulated myoblast differentiation leading to myotube formation. DNA microarray analysis revealed that genes associated with myoblast differentiation and muscle cell component formation were up-regulated in α-mangostin-treated cells. These results indicate that α-mangostin promotes myoblast differentiation through modulating the gene-expression profile in myoblasts.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09168451.2014.940832DOI Listing

Publication Analysis

Top Keywords

myoblast differentiation
16
promotes myoblast
8
differentiation modulating
8
modulating gene-expression
8
gene-expression profile
8
differentiation
5
alpha-mangostin promotes
4
myoblast
4
profile c2c12
4
c2c12 cells
4

Similar Publications

Pyruvate dehydrogenase kinase 1 controls triacylglycerol hydrolysis in cardiomyocytes.

J Biol Chem

March 2025

Department of Cellular and Developmental Biology, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada. Electronic address:

Pyruvate dehydrogenase kinase (PDK) 1 is one of four isozymes that inhibit the oxidative decarboxylation of pyruvate to acetyl-CoA via pyruvate dehydrogenase. PDK activity is elevated in fasting or starvation conditions to conserve carbohydrate reserves. PDK has also been shown to increase mitochondrial fatty acid utilization.

View Article and Find Full Text PDF

Engineering strategies for the construction of oriented and functional skeletal muscle tissues.

Biofabrication

March 2025

Institute of Zoology Chinese Academy of Sciences, Beichen West Road, Chaoyang District, Beijing 100101, P.R.China, Chaoyang District, 100101, CHINA.

The growth and formation of tissues, such as skeletal muscle, involve a complex interplay of spatiotemporal events, including cell migration, orientation, proliferation, and differentiation. With the continuous advancement of in vitro construction techniques, many studies have contributed to skeletal muscle tissue engineering (STME). This review summarizes recent advances in the ordered construction of skeletal muscle tissues, and evaluates the impact of engineering strategies on cell behavior and maturation, including biomaterials, manufacturing methods and training means.

View Article and Find Full Text PDF

Regulates Muscle Growth and Development by Targeting .

Cells

March 2025

Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Afairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.

Non-coding genes, such as microRNA and lncRNA, which have been widely studied, play an important role in the regulatory network of skeletal muscle development. However, the functions and mechanisms of most non-coding RNAs in skeletal muscle regulatory networks are unclear. This study investigated the function and mechanism of in muscle growth and development.

View Article and Find Full Text PDF

Myoblasts are the primary effector cells that play crucial roles in myogenesis and muscle regeneration following injury. However, isolating purified primary myoblasts from murine skeletal muscle poses challenges for junior researchers. Here, we present a simplified, low-risk, and optimized protocol for the extraction and enrichment of these myogenic progenitor cells.

View Article and Find Full Text PDF

Sarcopenia is an age-related muscle atrophy characterized by decreased muscle mass and function. However, potential treatments to alleviate sarcopenia remain limited. In this study, we investigated the effects of α-ketoisocaproate (KIC) on C2C12 differentiation and reactive oxygen species (ROS)-induced atrophy in C2C12 myotubes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!