Synthesis of mesoporous Mn/TiO2 nanocomposites and investigating the photocatalytic properties in aqueous systems.

Environ Sci Pollut Res Int

School of Chemistry and Physics, University of Kwa-Zulu Natal, Westville Campus, Private Bag X 54001, Durban, 4000, South Africa.

Published: January 2015

Mesoporous 20 wt% Mn/TiO2 nanocomposites were synthesized adopting modified sol-gel method at different pH (pH = 2, 7 and 11) conditions and calcined at 400 °C. Based on the characteristics of the 20 wt% Mn/TiO2 nanocomposites synthesized at pH 11, same procedure was adopted for the synthesis of different wt% Mn/TiO2. The nanocomposite samples and their surface properties were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), mapping, inductively coupled plasma optical emission spectrometry (ICP-OES), Fourier transform infrared (FTIR), and fluorescence spectrometry. The nanocomposites existed in the anatase phase of TiO2 with no peak assigned to Mn on the diffractogram. The photocatalytic activities of the materials were evaluated by monitoring degradation of a model dye (methylene blue (MB)) in presence of visible light and ozone. The nanocomposite synthesized under neutral condition (pH = 7) exhibited the best photocatalytic activity resulting from its relatively smaller crystal size (5.98 nm) and larger pore volume (0.30 cm(3)/g). One percentage of weight Mn/TiO2 showed 100% decolouration of MB in the presence of O3 after 100 min.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-014-3356-zDOI Listing

Publication Analysis

Top Keywords

mn/tio2 nanocomposites
12
wt% mn/tio2
12
electron microscopy
12
nanocomposites synthesized
8
transmission electron
8
mn/tio2
5
synthesis mesoporous
4
mesoporous mn/tio2
4
nanocomposites
4
nanocomposites investigating
4

Similar Publications

A highly sensitive signal-on photoelectrochemical (PEC) immunosensor was fabricated here using CdS:Mn/TiO2 as photoelectrochemical sensing platform, and silver nanoclusters and graphene naocomposites (AgNCs-GR) as signal amplification tags. The immunosensor was constructed based on the specific sandwich immunoreaction, and the photo-to-current conversion efficiency of the isolated protein modified CdS:Mn/TiO2 matrix was improved based on the synergistic effect of AgNCs-GR. Under irradiation, the photogenerated electrons from the AgNCs at a higher conduction band edge level could be transport to the CdS:Mn/TiO2 matrix with the assistance of highly conductive graphene nanosheets, as well as recycle the trapped excitons in the defects-rich CdS:Mn/TiO2 interface.

View Article and Find Full Text PDF

Synthesis of mesoporous Mn/TiO2 nanocomposites and investigating the photocatalytic properties in aqueous systems.

Environ Sci Pollut Res Int

January 2015

School of Chemistry and Physics, University of Kwa-Zulu Natal, Westville Campus, Private Bag X 54001, Durban, 4000, South Africa.

Mesoporous 20 wt% Mn/TiO2 nanocomposites were synthesized adopting modified sol-gel method at different pH (pH = 2, 7 and 11) conditions and calcined at 400 °C. Based on the characteristics of the 20 wt% Mn/TiO2 nanocomposites synthesized at pH 11, same procedure was adopted for the synthesis of different wt% Mn/TiO2. The nanocomposite samples and their surface properties were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), mapping, inductively coupled plasma optical emission spectrometry (ICP-OES), Fourier transform infrared (FTIR), and fluorescence spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!