Mechanistic insight into the photo-induced solvent substitution reaction of cis-[Ru(bipyridine)2(nicotinamide)2](2+) (1) is presented. Complex 1 is a photoactive species, designed to display high cytotoxicity following irradiation, for potential use in photodynamic therapy (photochemotherapy). In Ru(II) complexes of this type, efficient population of a dissociative triplet metal-centred ((3)MC) state is key to generating high quantum yields of a penta-coordinate intermediate (PCI) species, which in turn may form the target species: a mono-aqua photoproduct [Ru(bipyridine)2(nicotinamide)(H2O)](2+) (2). Following irradiation of 1, a thorough kinetic picture is derived from ultrafast UV/Vis transient absorption spectroscopy measurements, using a 'target analysis' approach, and provides both timescales and quantum yields for the key processes involved. We show that photoactivation of 1 to 2 occurs with a quantum yield ≥0.36, all within a timeframe of ~400 ps. Characterization of the excited states involved, particularly the nature of the PCI and how it undergoes a geometry relaxation to accommodate the water ligand, which is a keystone in the efficiency of the photoactivation of 1, is accomplished through state-of-the-art computation including complete active space self-consistent field methods and time-dependent density functional theory. Importantly, the conclusions here provide a detailed understanding of the initial stages involved in this photoactivation and the foundation required for designing more efficacious photochemotherapy drugs of this type.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4cp02359e | DOI Listing |
Sci Rep
January 2025
College of Electrical and Information Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, People's Republic of China.
The development and modification of grouting materials constitute crucial factors influencing the effectiveness of grouting. Given the pivotal role of water in the hydration of cement-based composite materials and construction processes, this study proposes an exploratory approach using green, economical magnetized water technology to enhance the performance of cement grouts. The research systematically investigates the effects of magnetized water on the fundamental grouting properties (stability, rheological behavior, and stone body strength) of cement grouts, prepared under varying magnetization conditions (including magnetic intensity, water flow speed, and cycle times).
View Article and Find Full Text PDFJ Food Drug Anal
December 2024
Zhenjiang College, Zhenjiang, 212000, PR China.
Ascorbic acid (AA) is used as a food additive for its antibacterial and antioxidant properties. However, excessive intake of AA is harmful to humans. Therefore, the detection of Fe and AA is generally recognized to be meaningful.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China. Electronic address:
Heavy metal contamination and pesticide residues pose significant threats to human health and ecosystems. Despite its broad applications, fluorescence imaging technology often struggles in complex ecological and biological environments due to disadvantages of background autofluorescence and low quantum yield. This study introduced a near-infrared (NIR) multifunctional "off-on-off" isophorone-based fluorescent bio-probe, DHB, characterized by a high fluorescence quantum yield (10.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Quantum Lab, Boehringer Ingelheim, 55218 Ingelheim am Rhein, Germany.
The phase estimation algorithm is crucial for computing the ground-state energy of a molecular electronic Hamiltonian on a quantum computer. Its efficiency depends on the overlap between the Hamiltonian's ground state and an initial state, which tends to decay exponentially with system size. We showcase a practical orbital optimization scheme to alleviate this issue.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstraße 7, 91058 Erlangen, Germany.
Emerging photovoltaics for outer space applications are one of the many examples where radiation hard molecular semiconductors are essential. However, due to a lack of general design principles, their resilience against extra-terrestrial high-energy radiation can currently not be predicted. In this work, the discovery of radiation hard materials is accelerated by combining the strengths of high-throughput, lab automation and machine learning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!