Background: The cotton bollworm, Helicoverpa armigera is one of the most important crop pests worldwide. It has developed high levels of resistance to synthetic insecticides, and hence, Bacillus thuringiensis (Bt) formulations are used as a safer pesticide and the Bt genes have been deployed in transgenic crops for controlling this pest. There is an apprehension that H. armigera might develop resistance to transgenic crops in future. Therefore, we studied the role of gut microbes by eliminating them with antibiotics in H. armigera larvae on the toxicity of Bt toxins against this pest.
Results: Commercial formulation of Bt (Biolep®) and the pure Cry1Ab and Cry1Ac toxin proteins were evaluated at ED50, LC50, and LC90 dosages against the H. armigera larvae with and without antibiotics (which removed the gut microbes). Lowest H. armigera larval mortality due to Bt formulation and the Bt toxins Cry1Ab and Cry1Ac was recorded in insects reared on diets with 250 and 500 μg ml-1 diet of each of the four antibiotics (gentamicin, penicillin, rifampicin, and streptomycin), while the highest larval mortality was recorded in insects reared on diets without the antibiotics. Mortality of H. armigera larvae fed on diets with Bt formulation and the δ-endotoxins Cry1Ab and Cry1Ac was inversely proportional to the concentration of antibiotics in the artificial diet. Nearly 30% reduction in larval mortality was observed in H. armigera larvae from F1 to F3 generation when the larvae were reared on diets without antibiotics (with gut microbes) and fed on 0.15% Bt or 12 μg Cry1Ab or Cry1Ac ml-1 diet, indicating development of resistance to Bt in the presence of gut microflora. However, there were no differences in larval mortality due to Bt, Cry1Ab or Cry1Ac across generations in insects when they were reared on diets with 250 μg of each antibiotic ml-1 diet (without gut microflora).
Conclusions: The results suggested that antibiotics which eliminated gut microflora influenced the toxicity of Bt towards H. armigera, and any variation in diversity and abundance of gut microflora will have a major bearing on development of resistance to Bt toxins applied as foliar sprays or deployed in transgenic crops for pest management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4222728 | PMC |
http://dx.doi.org/10.1186/1471-2180-14-200 | DOI Listing |
Mikrochim Acta
December 2024
Key Laboratory of Agricultural Genetically Modified Organisms Traceability of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
A multi-chromatic and multi-component lateral flow immunoassay (MCMC-LFIA) was developed for simultaneous detection of CP4 EPSPS, Bt-Cry1Ab, Bt-Cry1Ac, and PAT/bar proteins in genetically modified (GM) crops. Captured antibodies specific to these exogenous proteins were separately immobilized on a nitrocellulose membrane as test zones. Multi-colored microspheres, used as visible multi-probes, were conjugated with corresponding antibodies and sprayed on the conjugate pad.
View Article and Find Full Text PDFInsects
November 2024
Key Laboratory on Biodiversity and Biosafety, Nanjing Institute of Environmental Sciences, MEE, Nanjing 210042, China.
Transgenic poplars have been used to control quarantine pests worldwide, such as the fall webworm (, FW). However, the studies on the resistance mechanism of FW to Cry toxins are limited. This study obtained an FW strain with 45-fold resistance to Cry1Ab toxin by continuous screening in the laboratory.
View Article and Find Full Text PDFAnal Biochem
October 2024
Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China. Electronic address:
Using the amino acid sequences and analysis of selected known structures of Bt Cry toxins, Cry1Ab, Cry1Ac, Cry1Ah, Cry1B, Cry1C and Cry1F we specifically designed immunogens. After antibodies selection, broad-spectrum polyclonal antibodies (pAbs) and monoclonal antibody (namely 1A0-mAb) were obtained from rabbit and mouse, respectively. The produced pAbs displayed broad spectrum activity by recognizing Cry1 toxin, Cry2Aa, Cry2Ab and Cry3Aa with half maximal inhibitory concentration (IC) values of 0.
View Article and Find Full Text PDFPlants (Basel)
May 2024
National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Sanya 572024, China.
Plants significantly shape root-associated microbiota, making rhizosphere microbes useful environmental indicator organisms for safety assessment. Here, we report the pyrosequencing of the bacterial 16S ribosomal RNA in rhizosphere soil samples collected from transgenic rice Huahui No. 1 (GM crop) and its parental counterpart, Minghui63.
View Article and Find Full Text PDFBiomolecules
April 2024
Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei 184-8588, Tokyo, Japan.
By 2013, it had been shown that the genes cadherin-like receptor (Cad) and ATP-binding cassette transporter subfamily C2 (ABCC2) were responsible for insect resistance to several Cry1A toxins, acting as susceptibility-determining receptors, and many review articles have been published. Therefore, this review focuses on information about receptors and receptor-binding sites that have been revealed since 2014. Since 2014, studies have revealed that the receptors involved in determining susceptibility vary depending on the Cry toxin subfamily, and that binding affinity between Cry toxins and receptors plays a crucial role.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!