Efficient synthesis of N-alkylated α,β-unsaturated ketonitrones via Cu-catalyzed rearrangement.

Org Lett

Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.

Published: August 2014

N-Alkylated unsaturated ketonitrones were efficiently synthesized from propargyloxyamines using Cu catalysts. Mechanistic studies suggest that the rearrangement reaction proceeds via Cu-catalyzed intramolecular hydroamination, followed by thermally induced electrocyclic ring opening.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol501889gDOI Listing

Publication Analysis

Top Keywords

efficient synthesis
4
synthesis n-alkylated
4
n-alkylated αβ-unsaturated
4
αβ-unsaturated ketonitrones
4
ketonitrones cu-catalyzed
4
cu-catalyzed rearrangement
4
rearrangement n-alkylated
4
n-alkylated unsaturated
4
unsaturated ketonitrones
4
ketonitrones efficiently
4

Similar Publications

Quantitative Lipidomics of Biological Samples Using Supercritical Fluid Chromatography Mass Spectrometry.

Methods Mol Biol

January 2025

Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.

Lipidomics has attracted attention in the discovery of unknown biomolecules and for capturing the changes in metabolism caused by genetic and environmental factors in an unbiased manner. However, obtaining reliable lipidomics data, including structural diversity and quantification data, is still challenging. Supercritical fluid chromatography (SFC) is a suitable technique for separating lipid molecules with high throughput and separation efficiency.

View Article and Find Full Text PDF

Background: The role and relevance of macrophages both as causes and therapeutics of cellular senescence is rapidly emerging. However, current knowledge regarding the extent and depth of senescence in macrophages in vivo is limited and controversial. Further, acute models of stress-induced senescence in transformed/cancerous macrophage cell lines are being used although their efficacy and relevance are not characterized.

View Article and Find Full Text PDF

Fermentation is crucial for inducing desirable flavor and aroma profiles in cocoa products. This research focused on identifying microbial strains isolated from spontaneous cocoa fermentation in Hainan through 16S and Internal Transcribed Spacer (ITS) sequencing. Pectinase activity was screened, and metabolic dynamics of sugars and organic acids were analyzed using high-performance liquid chromatography.

View Article and Find Full Text PDF

Ice-Confined Synthesis of Stacked Polymer Nanospheres as Osmotic Power Generation Membranes.

Nano Lett

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.

Osmotic power extracts electricity from salinity gradients and provides a viable route toward clean energy. To improve the energy conversion efficiency, common strategies rely on fabricating precisely controlled nanopores to meet the requirements of high ionic conductivity and selectivity. We report ion transport through the free-volume networks in stacked polymer nanospheres for osmotic power harvesting.

View Article and Find Full Text PDF

The advancement of organic room temperature phosphorescence (RTP) materials has attracted considerable interest owing to their extensive applications. Their distinct advantages, including a metal-free composition, low toxicity, and facile synthesis under ambient conditions, make them highly desirable. This study examines the delayed fluorescence (DF) and RTP of metal-free, amorphous indenophenanthridine (IND)-based derivatives (1-10) and provides insights into molecular functionalisation and host matrix effects on delayed emission (RTP and DF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!