Crystal structure of serine acetyl transferase from Brucella abortus and its complex with coenzyme A.

Biochim Biophys Acta

School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India. Electronic address:

Published: October 2014

Brucella abortus is the major cause of premature foetal abortion in cattle, can be transmitted from cattle to humans, and is considered a powerful biological weapon. De novo cysteine biosynthesis is one of the essential pathways reported in bacteria, protozoa, and plants. Serine acetyltransferase (SAT) initiates this reaction by catalyzing the formation of O-acetylserine (OAS) using l-serine and acetyl coenzyme A as substrates. Here we report kinetic and crystallographic studies of this enzyme from B. abortus. The kinetic studies indicate that cysteine competitively inhibits the binding of serine to B. abortus SAT (BaSAT) and noncompetitively inhibits the binding of acetyl coenzyme A. The crystal structures of BaSAT in its apo state and in complex with coenzyme A (CoA) were determined to 1.96Å and 1.87Å resolution, respectively. BaSAT was observed as a trimer in a size exclusion column; however, it was seen as a hexamer in dynamic light scattering (DLS) studies and in the crystal structure, indicating it may exist in both states. The complex structure shows coenzyme A bound to the C-terminal region, making mostly hydrophobic contacts from the center of the active site extending up to the surface of the protein. There is no conformational difference in the enzyme between the apo and the complexed states, indicating lock and key binding and the absence of an induced fit mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbapap.2014.07.009DOI Listing

Publication Analysis

Top Keywords

crystal structure
8
brucella abortus
8
complex coenzyme
8
acetyl coenzyme
8
inhibits binding
8
coenzyme
5
structure serine
4
serine acetyl
4
acetyl transferase
4
transferase brucella
4

Similar Publications

Hydrogen evolution reaction (HER) is a key reaction in electrochemical water splitting for hydrogen production leading to the development of potentially sustainable energy technology. Importantly, the catalysts required for HER must be earth-abundant for their large-scale deployment; silicates representing one such class. Herein, we have synthesized a series of transition mono- and bi- metal metasilicates (with SO32- group) using facile wet-chemical method followed by calcination at a higher temperature.

View Article and Find Full Text PDF

When water is confined in a nanochannel, its thermodynamic and kinetic properties change dramatically compared to the macroscale. To investigate these phenomena, we conducted nonequilibrium molecular dynamics simulations on the heat transfer in copper-water nanochannels with lengths ranging from 12 to 20 nm in the absence and presence of an electric field. The results indicate that in the absence of an electric field ( = 12-20 nm), the binding force between water molecules in the 20 nm nanochannel is the weakest, facilitating thermal motion in the liquid phase.

View Article and Find Full Text PDF

Although Pb-based metal halide perovskites (MHPs) have excellent photoelectric characteristics, their toxicity remains a limiting factor for their widespread application. In the paper, a series of CsCuClxBr3-x (x = 1, 2, 3) MHP microcrystals were developed and their hydrogen evolution performance in ethanol and HX (X = Cl, Br) was also studied. Among them, CsCuCl3 microcrystals exhibit high hydrogen evolution performance in both HX and ethanol, attributed to their longest average lifetime and suitable band structure.

View Article and Find Full Text PDF

Nanographenes and polycyclic aromatic hydrocarbons, both finite forms of graphene, are promising organic semiconducting materials because their optoelectronic and magnetic properties can be modulated through precise control of their molecular peripheries. Several atomically precise edge structures have been prepared by bottom-up synthesis; however, no systematic elucidation of these edge topologies at the molecular level has been reported. Herein, we describe rationally designed modular syntheses of isomeric dibenzoixenes with diverse molecular peripheries, including cove, zigzag, bay, fjord, and gulf structured.

View Article and Find Full Text PDF

Pressure-Dependent Electronic Superlattice in the Kagome Superconductor CsV_{3}Sb_{5}.

Phys Rev Lett

December 2024

Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Kaiserstrasse 12, D-76131 Karlsruhe, Germany.

We present a high-resolution single crystal x-ray diffraction study of kagome superconductor CsV_{3}Sb_{5}, exploring its response to variations in pressure and temperature. We discover that at low temperatures, the structural modulations of the electronic superlattice, commonly associated with charge-density-wave order, undergo a transformation around p∼0.7  GPa from the familiar 2×2 pattern to a long-range-ordered modulation at wave vector q=(0,3/8,1/2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!