Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In order to reduce the ecotoxicity of paper mill, four different enzymatic pretreatment strategies were investigated in comparison to conventional chemical based processes. In strategy I, xylanase-aided pretreatment of pulp was carried out, and in strategy II, xylanase and laccase-mediator systems were used sequentially. Moreover, to compare the efficiency of Bacillus stearothermophilus xylanase and Ceriporiopsis subvermispora laccase in the reduction of ecotoxicity and pollution, parallel strategies (III and IV) were implemented using commercial enzymes. Conventional C(D)E(OP)D(1)D(2) (C(D), Cl(2) with ClO2; EOP, H2O2 extraction; D1 and D2, ClO2) and X/XLC(D)E(OP)D(1)D(2) (X, xylanase; L, laccase) sequences were employed with non-enzymatic and enzymatic strategies, respectively. Acute toxicity was determined by the extent of inhibition of bioluminescence of Vibrio fischeri with different dilutions of the effluent. Two-fold increase was observed in EC50 values for strategy I compared to the control process. On the other hand, sequential application of commercial enzymes resulted in higher acute toxicity compared to lab enzymes. In comparison to the control process, strategy II was the most efficient and successfully reduced 60.1 and 25.8% of biological oxygen demand (BOD) and color of effluents, respectively. We report for the first time the comparative analysis of the ecotoxicity of industrial effluents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109937 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0102581 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!