H2N2 Influenza A caused the Asian flu pandemic in 1957, circulated for more than 10 years and disappeared from the human population after 1968. Given that people born after 1968 are naïve to H2N2, that the virus still circulates in wild birds and that this influenza subtype has a proven pandemic track record, H2N2 is regarded as a potential pandemic threat. To prepare for an H2N2 pandemic, here we developed and tested in mice and ferrets two live attenuated influenza vaccines based on the haemagglutinins of the two different H2N2 lineages that circulated at the end of the cycle, using the well characterized A/Leningrad/134/17/57 (H2N2) master donor virus as the backbone. The vaccine strains containing the HA and NA of A/California/1/66 (clade 1) or A/Tokyo/3/67 (clade 2) showed a temperature sensitive and cold adapted phenotype and a reduced reproduction that was limited to the respiratory tract of mice, suggesting that the vaccines may be safe for use in humans. Both vaccine strains induced haemagglutination inhibition titers in mice. Vaccination abolished virus replication in the nose and lung and protected mice from weight loss after homologous and heterologous challenge with the respective donor wild type strains. In ferrets, the live attenuated vaccines induced high virus neutralizing, haemagglutination and neuraminidase inhibition titers, however; the vaccine based on the A/California/1/66 wt virus induced higher homologous and better cross-reactive antibody responses than the A/Tokyo/3/67 based vaccine. In line with this observation, was the higher virus reduction observed in the throat and nose of ferrets vaccinated with this vaccine after challenge with either of the wild type donor viruses. Moreover, both vaccines clearly reduced the infection-induced rhinitis observed in placebo-vaccinated ferrets. The results favor the vaccine based on the A/California/1/66 isolate, which will be evaluated in a clinical study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109939 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0102339 | PLOS |
medRxiv
November 2024
Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
Avian H5N1 influenza viruses are circulating widely in cattle and other mammals and pose a risk for a human pandemic. Previous studies suggest that older humans are more resistant to H5N1 infections due to childhood imprinting with other group 1 viruses (H1N1 and H2N2); however, the immunological basis for this is incompletely understood. Here we show that antibody titers to historical and recent H5N1 strains are highest in older individuals and correlate more strongly with year of birth than with age, consistent with immune imprinting.
View Article and Find Full Text PDFNat Commun
November 2024
College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China.
The 1957 H2N2 influenza pandemic virus [A(H2N2)pdm1957] has disappeared from humans since 1968, while H2N2 avian influenza viruses (AIVs) are still circulating in birds. It is necessary to reveal the recurrence risk and potential cross-species infection of these AIVs from avian to mammals. We find that H2 AIVs circulating in domestic poultry in China have genetic and antigenic differences compared to the A(H2N2)pdm1957.
View Article and Find Full Text PDFAvian Pathol
November 2024
National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, USDA, Ames, IA, USA.
The H2N2 avian influenza viruses (AIV) have been reported in the Northeast United States of America (USA) live bird market (LBM) system since 2014. In this study, we investigated the genetic evolution and characterized molecular markers of the recent H2N2 AIVs in LBMs in the Northeast USA. Phylogenetic analyses revealed that the LBM H2N2 lineage has evolved into three distinct subgroups (groups A.
View Article and Find Full Text PDFNat Microbiol
October 2024
Institute of Medical Virology, University of Zurich, Zurich, Switzerland.
Influenza A viruses (IAV) pose substantial burden on human and animal health. Avian, swine and human IAV bind sialic acid on host glycans as receptor, whereas some bat IAV require MHC class II complexes for cell entry. It is unknown how this difference evolved and whether dual receptor specificity is possible.
View Article and Find Full Text PDFNat Commun
July 2024
HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
Human cases of avian influenza virus (AIV) infections are associated with an age-specific disease burden. As the influenza virus N2 neuraminidase (NA) gene was introduced from avian sources during the 1957 pandemic, we investigate the reactivity of N2 antibodies against A(H9N2) AIVs. Serosurvey of healthy individuals reveal the highest rates of AIV N2 antibodies in individuals aged ≥65 years.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!