Ideal osmotic spaces for chlorobionts or cyanobionts are differentially realized by lichenized fungi.

Plant Physiol

Graduate School of Life Science, University of Hyogo, Kamigohri, Ako-gun, Hyogo 678-1297, Japan (M.K., R.S., Y.M., H.K., Y.F., A.M., Y.K., K.S.);Research and Utilization Division, Japan Synchrotron Radiation Research Institute/SPring-8, Kouto, Sayo, Hyogo 679-5198, Japan (A.T., K.U., Y.S.);National Institute of Polar Research, Tachikawa, Tokyo 190-8518, Japan (S.I., S.K.); andDepartment of Polar Science, Graduate University for Advanced Studies, Tachikawa, Tokyo 190-8518, Japan (S.I., S.K.).

Published: September 2014

Lichens result from symbioses between a fungus and either a green alga or a cyanobacterium. They are known to exhibit extreme desiccation tolerance. We investigated the mechanism that makes photobionts biologically active under severe desiccation using green algal lichens (chlorolichens), cyanobacterial lichens (cyanolichens), a cephalodia-possessing lichen composed of green algal and cyanobacterial parts within the same thallus, a green algal photobiont, an aerial green alga, and a terrestrial cyanobacterium. The photosynthetic response to dehydration by the cyanolichen was almost the same as that of the terrestrial cyanobacterium but was more sensitive than that of the chlorolichen or the chlorobiont. Different responses to dehydration were closely related to cellular osmolarity; osmolarity was comparable between the cyanolichen and a cyanobacterium as well as between a chlorolichen and a green alga. In the cephalodium-possessing lichen, osmolarity and the effect of dehydration on cephalodia were similar to those exhibited by cyanolichens. The green algal part response was similar to those exhibited by chlorolichens. Through the analysis of cellular osmolarity, it was clearly shown that photobionts retain their original properties as free-living organisms even after lichenization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149719PMC
http://dx.doi.org/10.1104/pp.113.232942DOI Listing

Publication Analysis

Top Keywords

green algal
16
green alga
12
terrestrial cyanobacterium
8
cellular osmolarity
8
green
7
ideal osmotic
4
osmotic spaces
4
spaces chlorobionts
4
chlorobionts cyanobionts
4
cyanobionts differentially
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!