Due to formation of fibrosis and the loss of contractile muscle tissue, severe muscle injuries often result in insufficient healing marked by a significant reduction of muscle force and motor activity. Our previous studies demonstrated that the local transplantation of mesenchymal stromal cells into an injured skeletal muscle of the rat improves the functional outcome of the healing process. Since, due to the lack of sufficient markers, the accurate discrimination of pathophysiological regions in injured skeletal muscle is inadequate, underlying mechanisms of the beneficial effects of mesenchymal stromal cell transplantation on primary trauma and trauma adjacent muscle area remain elusive. For discrimination of these pathophysiological regions, formalin-fixed injured skeletal muscle tissue was analyzed by MALDI imaging MS. By using two computational evaluation strategies, a supervised approach (ClinProTools) and unsupervised segmentation (SCiLS Lab), characteristic m/z species could be assigned to primary trauma and trauma adjacent muscle regions. Using "bottom-up" MS for protein identification and validation of results by immunohistochemistry, we could identify two proteins, skeletal muscle alpha actin and carbonic anhydrase III, which discriminate between the secondary damage on adjacent tissue and the primary traumatized muscle area. Our results underscore the high potential of MALDI imaging MS to describe the spatial characteristics of pathophysiological changes in muscle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pmic.201400088 | DOI Listing |
Hernia
January 2025
Department of Surgery, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1259, New York, NY, 10029, USA.
Purpose: While surgeons agree that perioperative field blocks should be performed for open inguinal hernia surgery, there lacks consensus in the minimally invasive context. Prior small-scale randomized trials study pain scores only up to 24 h postoperatively. Thus, we sought to investigate the analgesic benefits of a bupivacaine transversus abdominis plane (TAP) block in the first 4 postoperative days.
View Article and Find Full Text PDFCurr Obes Rep
January 2025
Metabolism and Body Composition, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
Background: Recent technological advances have introduced novel methods for measuring body composition, each with unique benefits and limitations. The choice of method often depends on the trade-offs between accuracy, cost, participant burden, and the ability to measure specific body composition compartments.
Objective: To review the considerations of cost, accuracy, portability, and participant burden in reference and emerging body composition assessment methods, and to evaluate their clinical applicability.
Curr Nutr Rep
January 2025
Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.
Purpose Of Review: This review aims to determine whether muscle mass and function can be effectively maintained without relying on animal-based protein sources. We evaluate the quality, digestibility, and essential amino acid profiles of plant-based proteins to understand their potential in preventing and managing sarcopenia.
Recent Finding: Recent studies indicate that while animal-based proteins have traditionally been considered the gold standard for supporting muscle protein synthesis, certain plant-based protein blends, fortified with leucine or other essential amino acids, can produce comparable anabolic responses.
Eur Geriatr Med
January 2025
Department of Public Health, Jining Medical University, Jining, 272000, China.
Purpose: Sarcopenia is an age-related disease that is related to nutritional intake and chronic low-grade inflammation. The aim of this study was to investigate the association of dietary intake, inflammatory markers and sarcopenia among the community-dwelling older adults.
Methods: A total of 1001 older adults aged 60 and above were recruited.
J Cachexia Sarcopenia Muscle
February 2025
Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA.
Background: A decline in skeletal muscle mass and function known as skeletal muscle sarcopenia is an inevitable consequence of aging. Sarcopenia is a major cause of decreased muscle strength, physical frailty and increased muscle fatigability, contributing significantly to an increased risk of physical disability and functional dependence among the elderly. There remains a significant need for a novel therapy that can improve sarcopenia and related problems in aging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!