Growing common duckweed Lemna minor L. in diluted livestock wastewater is an alternative option for pollutants removal and consequently the accumulated duckweed biomass can be used for bioenergy production. However, the biomass accumulation can be inhibited by high level of ammonium (NH4 (+)) in non-diluted livestock wastewater and the mechanism of ammonium inhibition is not fully understood. In this study, the effect of high concentration of NH4 (+) on L. minor biomass accumulation was investigated using NH4 (+) as sole source of nitrogen (N). NH4 (+)-induced toxicity symptoms were observed when L. minor was exposed to high concentrations of ammonium nitrogen (NH4 (+)-N) after a 7-day cultivation. L. minor exposed to the NH4 (+)-N concentration of 840 mg l(-1) exhibited reduced relative growth rate, contents of carbon (C) and photosynthetic pigments, and C/N ratio. Ammonium irons were inhibitory to the synthesis of photosynthetic pigments and caused C/N imbalance in L. minor. These symptoms could further cause premature senescence of the fronds, and restrain their reproduction, growth and biomass accumulation. L. minor could grow at NH4 (+)-N concentrations of 7-84 mg l(-1) and the optimal NH4 (+)-N concentration was 28 mg l(-1).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-014-3353-2 | DOI Listing |
Mar Pollut Bull
January 2025
Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain.
Ocean acidification (OA) and global warming (GW) drive a variety of responses in seagrasses that may modify their carbon metabolism, including the dissolved organic carbon (DOC) fluxes and the organic carbon stocks in upper sediments. In a 45-day full-factorial mesocosm experiment simulating forecasted CO and temperature increase in a Cymodocea nodosa community, we found that net community production (NCP) was higher under OA conditions, particularly when combined with warming (i.e.
View Article and Find Full Text PDFSci Total Environ
January 2025
ECOMARE, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal.
Within the UN Decade on Ecosystem Restoration (2021-2030) framework, a Nature-based Solution (NbS) using Zostera noltei transplants was tested to restore a historically contaminated intertidal area. In-situ transplantation relied on patches of seagrass and sediment from a Donor meadow and its evolution was monitored for two years. The evaluation of the transplant success encompassed the seagrass coverage area, seagrass biomass, tissue mercury (Hg) accumulation, and photosynthetic efficiency.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, and College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; School of Agriculture and Environment, and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia. Electronic address:
Soil cadmium (Cd) pollution poses a significant environmental threat, impacting global food security and human health. Recent studies have highlighted the potential of arbuscular mycorrhizal (AM) fungi to protect crops from various heavy metal stresses, including Cd toxicity. To elucidate the tolerance mechanisms of maize in response to Cd toxicity under AM symbiosis, this study used two maize genotypes with contrasting Cd tolerance: Zhengdan958 (Cd-tolerant) and Zhongke11 (Cd-sensitive).
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Laboratory of Ecotoxicology, Centre of Advanced Studies, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India. Electronic address:
The phytotoxic nature of Ozone (O) has been well documented in a number of scientific literatures during the last few decades. Although there are sufficient studies related to O impact assessment studies on crop plants and tree species, studies pertaining to O effects on medicinal plants are comparatively sparse. During the recent years, the mitigation strategies for management of O stress in plants have also assumed paramount significance.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!