Uranium is a heavy metal naturally found in the earth's crust that can contaminate the general public population when ingested. The acute effect and notably the uranium nephrotoxicity are well known but knowledge about the effect of chronic uranium exposure is less clear. In a dose-response study we sought to determine if a chronic exposure to uranium is toxic to the kidneys and the liver, and what the anti-oxidative system plays in these effects. Rats were contaminated for 3 or 9 months by uranium in drinking water at different concentrations (0, 1, 40, 120, 400, or 600 mg/L). Uranium tissue content in the liver, kidneys, and bones was linear and proportional to uranium intake after 3 and 9 months of contamination; it reached 6 μg per gram of kidney tissues for the highest uranium level in drinking water. Nevertheless, no histological lesions of the kidney were observed, nor any modification of kidney biomarkers such as creatinine or KIM-1. After 9 months of contamination at and above the 120-mg/L concentration of uranium, lipid peroxidation levels decreased in plasma, liver, and kidneys. Glutathione concentration increased in the liver for the 600-mg/L group, in the kidney it increased dose dependently, up to 10-fold, after 9 months of contamination. Conversely, chronic uranium exposure irregularly modified gene expression of antioxidant enzymes and activities in the liver and kidneys. In conclusion, chronic uranium exposure did not induce nephrotoxic effects under our experimental conditions, but instead reinforced the antioxidant system, especially by increasing glutathione levels in the kidneys.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/10715762.2014.945441 | DOI Listing |
J Radiol Prot
January 2025
WSU, Richland, Washington, UNITED STATES.
The radium dial painters (RDP) are a well-described group of predominantly young women who incidentally ingested 226Ra and 228Ra as they painted luminescent watch dials in the first part of the twentieth century. In 1974 pathologist Dr. William D.
View Article and Find Full Text PDFToxicol Res (Camb)
February 2025
Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada.
The mining industry, including uranium mining and milling, is of high importance in Canada. It is, however, important to consider that ore processing can result in the creation of by-products that contain radionuclides such as radium-226 (Ra). Even with the strict discharge regulations in place, there is limited evidence to suggest that the current Canadian regulatory thresholds for Ra are protective for aquatic life.
View Article and Find Full Text PDFArch Environ Contam Toxicol
January 2025
Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada.
Mining operations in Canada, including uranium mining and milling, generate by-products containing radionuclides, including radium-226 (Ra), a long-lived, bioaccumulative calcium (Ca) analog. Despite strict discharge regulations, there is limited evidence to suggest that current thresholds for Ra adequately protect aquatic organisms. Furthermore, Canada lacks a federal water quality guideline for Ra, underscoring the need for protective limits to safeguard aquatic ecosystems.
View Article and Find Full Text PDFBiomed Pharmacother
December 2024
Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094, Xie-Tu Road, Shanghai 200032, PR China. Electronic address:
Uranium (U) released from U mining and spent nuclear fuel reprocessing in the nuclear industry, nuclear accidents and military activities as a primary environmental pollutant (e.g., drinking water pollution) is a threat to human health.
View Article and Find Full Text PDFJACC Adv
December 2024
Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!