The present work presents new bactericidal coatings, based on two families of non-toxic, antimicrobial glasses belonging to B2O3-SiO2-Na2O-ZnO and SiO2-Na2O-Al2O3-CaO-B2O3 systems. Free of cracking, single layer direct coatings on different biomedical metallic substrates (titanium alloy, Nb, Ta, and stainless steel) have been developed. Thermal expansion mismatch was adjusted by changing glass composition of the glass type, as well as the firing atmosphere (air or Ar) according to the biomedical metallic substrates. Formation of bubbles in some of the glassy coatings has been rationalized considering the reactions that take place at the different metal/coating interfaces. All the obtained coatings were proven to be strongly antibacterial versus Escherichia coli (>4 log).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4139889PMC
http://dx.doi.org/10.3390/ijms150713030DOI Listing

Publication Analysis

Top Keywords

biomedical metallic
12
metallic substrates
12
coatings biomedical
8
coatings
5
calcium zinc
4
zinc bactericidal
4
bactericidal glass
4
glass coatings
4
substrates work
4
work presents
4

Similar Publications

Exploring the Ascorbate Requirement of the 2-Oxoglutarate-Dependent Dioxygenases.

J Med Chem

January 2025

Ma̅tai Ha̅ora - Centre for Redox Biology and Medicine, Department of Biomedical Science and Pathology, University of Otago, Christchurch, Christchurch 8140, New Zealand.

In humans, the 2-oxoglutarate-dependent dioxygenases (2-OGDDs) catalyze hydroxylation reactions involved in cell metabolism, the biosynthesis of small molecules, DNA and RNA demethylation, the hypoxic response and the formation of collagen. The reaction is catalyzed by a highly oxidizing ferryl-oxo species produced when the active site non-heme iron engages molecular oxygen. Enzyme activity is specifically stimulated by l-ascorbic acid (ascorbate, vitamin C), an effect not well mimicked by other reducing agents.

View Article and Find Full Text PDF

Biomimetic Silk Nanoparticle Manufacture: Calcium Ion-Mediated Assembly.

ACS Biomater Sci Eng

January 2025

Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St., Glasgow G4 0RE,Scotland,U.K.

Silk has emerged as an interesting candidate among protein-based nanocarriers due to its favorable properties, including biocompatibility and a broad spectrum of processing options to tune particle critical quality attributes. The silk protein conformation during storage in the middle silk gland of the silkworm is modulated by various factors, including the most abundant metallic ion, calcium ion (Ca). Here, we report spiking of liquid silk with calcium ions to modulate the silk nanoparticle size.

View Article and Find Full Text PDF

A novel ionic liquid MALDI matrix, 3-aminoquinoline/2',4',6'-trihydroxyacetophenone monohydrate (3-AQ/THAP), was developed for the rapid qualitative and quantitative detection of miRNA from biological samples. Compared to the traditional matrix 2,5-dihydroxybenzoic acid (DHB) and previously reported oligonucleotide-specific matrices, such as 3-aminopicolinic acid (3-APA), 3-hydroxypicolinic acid (3-HPA), and 6-aza-2-thiothymine (ATT), the 3-AQ/THAP matrix offers several advantages. It produces fewer alkali metal adduct peaks, exhibits higher sensitivity, and ensures better spot-to-spot repeatability.

View Article and Find Full Text PDF

Design of a light and Ca switchable organic-peptide hybrid.

Proc Natl Acad Sci U S A

February 2025

SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea.

The design of organic-peptide hybrids has the potential to combine our vast knowledge of protein design with small molecule engineering to create hybrid structures with complex functions. Here, we describe the computational design of a photoswitchable Ca-binding organic-peptide hybrid. The designed molecule, designated Ca-binding switch (CaBS), combines an EF-hand motif from classical Ca-binding proteins such as calmodulin with a photoswitchable group that can be reversibly isomerized between a spiropyran (SP) and merocyanine (MC) state in response to different wavelengths of light.

View Article and Find Full Text PDF

The Banning of Engineered Stone in Australia: An Evidence-Based and Precautionary Policy.

Int J Soc Determinants Health Health Serv

January 2025

CHU Rennes, Inserm, EHESP, Irset-Institut de Recherche en Santé, Environnement et Travail-UMRS, University of Rennes, Rennes, France.

On December 13, 2023, Australia became the first country to ban engineered stone. This material contains more than 80 percent crystalline silica, agglomerated with resins, metal oxides and other (potentially toxic) substances. Engineered stone has become a mass-market product since the late 1990s and has contributed to a worldwide resurgence of accelerated forms of silicosis and a notable incidence of systemic diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!