The physisorption of water on graphene is investigated with the hybrid density functional theory (DFT)-functional B3LYP combined with empirical corrections, using moderate-sized basis sets such as 6-31G(d). This setup allows to model the interaction of water with graphene going beyond the quality of classical or semiclassical simulations, while still keeping the computational costs under control. Good agreement with respect to Coupled Cluster with singles and doubles excitations and perturbative triples (CCSD(T)) results is achieved for the adsorption of a single water molecule in a benchmark with two DFT-functionals (Perdew/Burke/Ernzerhof (PBE), B3LYP) and Grimme's empirical dispersion and counterpoise corrections. We apply the same setting to graphene supported by epitaxial hexagonal boron nitride (h-BN), leading to an increased interaction energy. To further demonstrate the achievement of the empirical corrections, we model, entirely from first principles, the electronic properties of graphene and graphene supported by h-BN covered with different amounts of water (one, 10 water molecules per cell and full coverage). The effect of h-BN on these properties turns out to be negligibly small, making it a good candidate for a substrate to grow graphene on.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcc.23686 | DOI Listing |
J Comput Chem
January 2025
Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel.
We have investigated the title question for both a subset of the W4-11 total atomization energies benchmark, and for the A24x8 noncovalent interactions benchmark. Overall, counterpoise corrections to post-CCSD(T) contributions are about two orders of magnitude less important than those to the CCSD(T) interaction energy. Counterpoise corrections for connected quadruple substitutions (Q) are negligible, and or especially so.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
Department of Chemistry, University of the Free State, PO BOX 339, Bloemfontein 9300, South Africa.
Computational electronic structure methods, including ab initio and density functional theory (DFT), have been assessed in calculating the binding energies of 14 five-membered heterocyclic dimers. The configurations were generated using classical molecular dynamics before optimization at the MP2/aug-cc-pVTZ. Benchmark binding energies are calculated at the CCSD(T)/CBS level of theory.
View Article and Find Full Text PDFChem Sci
December 2024
Department of Chemistry & Biochemistry, The Ohio State University 151 W. Woodruff Ave. Columbus Ohio 43210 USA
The many-body expansion is a fragment-based approach to large-scale quantum chemistry that partitions a single monolithic calculation into manageable subsystems. This technique is increasingly being used as a basis for fitting classical force fields to electronic structure data, especially for water and aqueous ions, and for machine learning. Here, we show that the many-body expansion based on semilocal density functional theory affords wild oscillations and runaway error accumulation for ion-water interactions, typified by F(HO) with ≳ 15.
View Article and Find Full Text PDFJ Mol Model
November 2024
Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH), Santiago, Chile.
J Phys Chem A
September 2024
Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 7610001 Reḥovot, Israel.
Basis set extrapolations are typically rationalized either from analytical arguments involving the partial-wave or principal expansions of the correlation energy in helium-like systems or from fitting extrapolation parameters to reference energetics for a small(ish) training set. Seeking to avoid both, we explore a third alternative: extracting extrapolation parameters from the requirement that the BSSE (basis set superposition error) should vanish at the complete basis set limit. We find this to be a viable approach provided that the underlying basis sets are not too small and reasonably well balanced.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!