Revision of the classical dopamine D2 agonist pharmacophore based on an integrated medicinal chemistry, homology modelling and computational docking approach.

Neurochem Res

Department of Drug Design and Pharmacology, The Faculty of Health and Medical Sciences, University of Copenhagen, 2 Universitetsparken, 2100, Copenhagen, Denmark.

Published: October 2014

The scientific advances during the 1970ies and 1980ies within the field of dopaminergic neurotransmission enabled the development of a pharmacophore that became the template for design and synthesis of dopamine D2 agonists during the following four decades. A major drawback, however, is that this model fails to accommodate certain classes of restrained dopamine D2 agonists including ergoline structures. To accommodate these, a revision of the original model was required. The present study has addressed this by an extension of the original model without compromising its obvious qualities. The revised pharmacophore contains an additional hydrogen bond donor feature, which is required for it to accommodate ergoline structures in a low energy conformation and in accordance with the steric restrictions dictated by the original model. The additional pharmacophore feature suggests ambiguity in the binding mode for certain compounds, including a series of ergoline analogues, which was reported recently. The ambiguity was confirmed by docking to a homology model of the D2 receptor as well as by pharmacological characterization of individual enantiomers of one of the analogues. The present research also addresses the potential of designing ligands that interact with the receptor in a large, distal cavity of the dopamine D2 receptor that has not previously been studied systematically. The pharmacological data indicate that this area may be a major determinant for both the dopamine D2 affinity and efficacy, which remains to be explored in future studies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11064-014-1314-2DOI Listing

Publication Analysis

Top Keywords

original model
12
dopamine agonists
8
ergoline structures
8
dopamine
5
model
5
revision classical
4
classical dopamine
4
dopamine agonist
4
pharmacophore
4
agonist pharmacophore
4

Similar Publications

Evaluation of a Deep Learning Denoising Algorithm for Dose Reduction in Whole-Body Photon-Counting CT Imaging: A Cadaveric Study.

Acad Radiol

January 2025

Department of Radiology, University Hospital Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany (R.D., J.M.B., B.S., J.M., S.G., P.K., S.W., J.H., K.N., S.A., A.B.).

Rationale And Objectives: Photon Counting CT (PCCT) offers advanced imaging capabilities with potential for substantial radiation dose reduction; however, achieving this without compromising image quality remains a challenge due to increased noise at lower doses. This study aims to evaluate the effectiveness of a deep learning (DL)-based denoising algorithm in maintaining diagnostic image quality in whole-body PCCT imaging at reduced radiation levels, using real intraindividual cadaveric scans.

Materials And Methods: Twenty-four cadaveric human bodies underwent whole-body CT scans on a PCCT scanner (NAEOTOM Alpha, Siemens Healthineers) at four different dose levels (100%, 50%, 25%, and 10% mAs).

View Article and Find Full Text PDF

Validating psychometric properties of generic quality-of-life instruments (WHOQOL-BREF (TW) and EQ-5D) among non-dialysis chronic kidney disease: Rasch and confirmatory factor analyses.

J Formos Med Assoc

January 2025

Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng-Kung University, Tainan, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan. Electronic address:

Background: Quality of life (QOL) is important for evaluating medical care outcomes. In chronic kidney disease (CKD) population, generic instruments, such as WHOQOL-BREF and EQ-5D, are commonly used for comparing various medical conditions for policy-making purposes. However, their psychometric properties have not yet been validated in non-dialysis CKD population.

View Article and Find Full Text PDF

Efficient Hg(Ⅱ) removed by l-cysteine modified UiO-66 through chemical adsorption via a facile partial ligand replacement strategy.

J Colloid Interface Sci

January 2025

College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000 PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095 PR China; Institutes of Agricultural Science and Technology Development, Yangzhou 225127 Jiangsu, PR China.

In this work, UiO-66-l-cys with enhanced adsorption capacity for Hg(Ⅱ) in water was synthesized through a facile two-step partial ligand replacement strategy. The presence of the functional groups significantly enhanced the capacity of the material for Hg(Ⅱ). According to the Langmuir model, the maximum theoretical adsorption capacity was calculated to be 1321.

View Article and Find Full Text PDF

Background And Objective: Coughing events are eruptive sources of virus-laden droplets/droplet nuclei. These increase the risk of infection in susceptible individuals during airborne transmission. The oral cavity functions as an exit route for exhaled droplets.

View Article and Find Full Text PDF

ConspectusThe electronic properties of atomically thin van der Waals (vdW) materials can be precisely manipulated by vertically stacking them with a controlled offset (for example, a rotational offset─i.e., twist─between the layers, or a small difference in lattice constant) to generate moiré superlattices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!