Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Developing electronics in unconventional forms provides opportunities to expand the use of electronics in diverse applications including bio-integrated or implanted electronics. One of the key challenges lies in integrating semiconductor microdevices onto unconventional substrates without glue, high pressure or temperature that may cause damage to microdevices, substrates or interfaces. This paper describes a solution based on natural gecko setal arrays that switch adhesion mechanically on and off, enabling pick and place manipulation of thin microscale semiconductor materials onto diverse surfaces including plants and insects whose surfaces are usually rough and irregular. A demonstration of functional 'geckoprinted' microelectronic devices provides a proof of concept of our results in practical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4233745 | PMC |
http://dx.doi.org/10.1098/rsif.2014.0627 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!