The adaptability and survival of Porphyromonas gingivalis in the oxidative microenvironment of the periodontal pocket are indispensable for survival and virulence, and are modulated by multiple systems. Among the various genes involved in P. gingivalis oxidative stress resistance, vimA gene is a part of the 6.15-kb locus. To elucidate the role of a P. gingivalis vimA-defective mutant in oxidative stress resistance, we used a global approach to assess the transcriptional profile, to study the unique metabolome variations affecting survival and virulence in an environment typical of the periodontal pocket. A multilayered protection strategy against oxidative stress was noted in P. gingivalis FLL92 with upregulation of detoxifying genes. The duration of oxidative stress was shown to differentially modulate transcription with 94 (87%) genes upregulated twofold during 10 min and 55 (83.3%) in 15 min. Most of the upregulated genes (55%), fell in the hypothetical/unknown/unassigned functional class. Metabolome variation showed reduction in fumarate and formaldehyde, hence resorting to alternative energy generation and maintenance of a reduced metabolic state. There was upregulation of transposases, genes encoding for the metal ion binding protein transport and secretion system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4363123 | PMC |
http://dx.doi.org/10.1111/omi.12075 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China.
ADAR is highly expressed and correlated with poor prognosis in hepatocellular carcinoma (HCC), yet the role of its constitutive isoform ADARp110 in tumorigenesis remains elusive. We investigated the role of ADARp110 in HCC and underlying mechanisms using clinical samples, a hepatocyte-specific knock-in mouse model, and engineered cell lines. ADARp110 is overexpressed and associated with poor survival in both human and mouse HCC.
View Article and Find Full Text PDFPLoS One
January 2025
Chemistry and Biochemistry, University of St. Thomas, Houston, TX, United States of America.
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality globally, with oxidative stress playing a pivotal role in its progression. Free radicals produced via oxidative stress contribute to lipid peroxidation, leading to subsequent inflammatory responses, which then result in atherosclerosis. Antioxidants inhibit these harmful effects through their reducing ability, thereby preventing oxidative damage.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
Microbial transmission from mother to infant is important for offspring microbiome formation and health. However, it is unclear whether maternal gut inflammation (MGI) during lactation influences mother-to-infant microbial transmission and offspring microbiota and disease susceptibility. In this study, it is found that MGI during lactation altered the gut microbiota of suckling pups by shaping the maternal microbiota in the gut and mammary glands.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
Inadvertent exposure to aristolochic acids (AAs) is causing chronic renal disease worldwide, with aristolochic acid I (AA-I) identified as the primary toxic agent. This study employed chemical methods to investigate the mechanisms underlying the nephrotoxicity and carcinogenicity of AA-I. Aristolochic acid II (AA-II), which has a structure similar to that of AA-I, was investigated with the same methods for comparison.
View Article and Find Full Text PDFDiabetes
January 2025
Department of Biology & Institute of Biochemistry, Carleton University, Ottawa, ON, Canada.
Cancer survivors have an increased risk of developing Type 2 diabetes compared to the general population. Patients treated with cisplatin, a common chemotherapeutic agent, are more likely to develop metabolic syndrome and Type 2 diabetes than age- and sex-matched controls. Surprisingly, the impact of cisplatin on pancreatic islets has not been reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!