Long-term performance is of primary concern when considering the commercialized use of an microbial fuel cell(MFC). The long-term stability of MFC was studied using dairy manure as substrate over a testing time of 171 d. The results showed that the MFC could efficiently recover electricity from dairy manure during the long-time run, and the average power density was 6. 77 Wm-3 +/- 2. 11 W m-3. On day 70, the polarization curve was measured, the open circuit voltage, internal resistance and maximum power density of MFC were 0. 874 V, 22. 1 omega and 14. 1 W.m -3, respectively. The 30-day TCOD removal decreased with increasing test time, and the CE during the 121-150 d period reached 17.5% +/-3.3%. Phylogenetic analyses revealed that the dominant microbial communities in anodic biofilm were Proteobacteria (45%) , Bacteroidetes (22%) , Firmicutes (17% ) and Actinobacteria (11% ). At genera level, the bacteria with electricity production and (or) cellulose degradation ability, such as Clostridium and Cellulomonas were the abundant taxa.
Download full-text PDF |
Source |
---|
Heliyon
January 2025
Amity Institute of Microbial Technology, Amity University Rajasthan, Kant Kalwar, Jaipur, 303002, Rajasthan, India.
The goal of this research is to develop and characterize low-cost NHI doped polyvinyl alcohol (PVA)-4-ethyl-4-methylmorpholiniumbromide (ionic liquid) anion exchange membranes (AEM) and its application for membrane cathode assembly. Physical characterization like FTIR, POM, and XRD notified the functional groups, basic structure, and amorphosity of the produced membrane, and it was employed in single-chambered microbial fuel cells (sMFCs) as a separator. The membranes in terms of oxygen diffusion, proton conductivity, and ion exchange capabilities were evaluated.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
College of Water Sciences, Beijing Normal University, Beijing 100875, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; National University of Singapore, Department of Civil and Environmental Engineering, 1 Engineering Drive 2, 117576, Singapore. Electronic address:
The extensive use of the antimicrobial compound chlorhexidine (CHD) has emerged as a significant threat to both the ecological environment and human health. To address this concern, a photo-electrochemical cell-microbial fuel cell (PMFC) system was studied for CHD removal by incorporating, for the first time, the photocatalysts black phosphorus/carbon nitride (BPCN) and CuO into the bioanode and air cathode of an MFC, respectively. By combining electrochemical, macro-genomic, and intermediate product analyses, the underlying mechanisms of bioelectronic and photoelectronic synergies were elucidated.
View Article and Find Full Text PDFNutrients
December 2024
Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy.
Metabolic alterations, including hypermetabolism, lipid imbalances, and glucose dysregulation, are pivotal contributors to the onset and progression of Amyotrophic Lateral Sclerosis (ALS). These changes exacerbate systemic energy deficits, heighten oxidative stress, and fuel neuroinflammation. Simultaneously, gastrointestinal dysfunction and gut microbiota (GM) dysbiosis intensify disease pathology by driving immune dysregulation, compromising the intestinal barrier, and altering gut-brain axis (GBA) signaling, and lastly advancing neurodegeneration.
View Article and Find Full Text PDFBioresour Technol
January 2025
Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065 PR China. Electronic address:
Theanode enables raised microbial fuel cells (MFCs) performance via in-situ growth electroactive material. However, the role of fabricated microstructures in electroactive bacteria loading and extracellular electron transfer (EET) has been paid less attention. Here, MoS2 nanosheets are custom grown on carbon cloth to construct anode models with diverse surface microstructures.
View Article and Find Full Text PDFSci Total Environ
January 2025
University of Kansas, Kansas Biological Survey, 2101 Constant Avenue, Takeru Higuchi Hall, Lawrence, KS 66047, USA; University of Kansas, Ecology & Evolutionary Biology, 1200 Sunnyside Avenue Haworth Hall, Lawrence, KS 66045, USA.
Forty percent of terrestrial ecosystems require recurrent fires driven by feedbacks between fire and plant fuels. The accumulation of fine fuels in these ecosystems play a key role in fire intensity, which alters soil nutrients and shapes soil microbial and plant community responses to fire. Changes to post-fire plant fuel production are well known to feed back to future fires, but post-fire decomposition of new fuels is poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!