Waste sludge from waste water treatment plants was treated with the carbon disulfide in alkaline medium to prepare xanth, aiming to explore an efficient way to recycle waste sludge. Fourier transform infrared spectroscopy (FTIR) was applied to characterize the sludge. Batch experiments were conducted to investigate the adsorption property of Cu2+ as well as effecting factors including pH and initial concentration of Cu2+ . Results show that the chemical modification introduces sulfur groups successfully and the adsorption capacity of xanthate-functionalized sludge increases by 20.6%- 46. 9% comparing to the pristine waste sludge. The Cu2+ removal efficiency of xanthate-functionalized sludge reaches 96.7% when the initial concentration of Cu2+ is 25 mgL-1. The adsorption process can attain equilibrium within 3 hours and kinetics is found to be best-fit the Pseudo-second-order equation. The process is jointly controlled by film diffusion and intraparticle diffusion. Both Langmuir model and Freundlich model can describe the adsorption, process well. The maximum adsorption capacity given by the Langmuir model is 142.92 mgg-1 at 25 degree C (pH = 5). Adsorption capacity increases with pH value (1-5) and initial Cu2+ concentration. The xanthate-functionalized sludge can be used as high performance adsorbents to recycle waste resources.
Download full-text PDF |
Source |
---|
Environ Sci Pollut Res Int
January 2025
Animal Production Department, Faculty of Agriculture, Cairo University, Giza, Egypt.
Aquaculture systems generate large amounts of sludge that represent serious environmental threats if discharged directly into local ecosystems. However, this nutrient-rich sediment can contribute to nutrient cycling by being applied as an organic fertilizer to ornamental medicinal trees during their early growth stages. To investigate the potential advantages of using recirculating aquaculture system sludge (RASS) and biofloc technology sludge (BFTS) as organic fertilization alternatives to chemical fertilization, a pot trial was conducted at the Faculty of Agriculture, Cairo University, Egypt.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China; Institute of Science and Technology Innovation Co., Ltd., South China Normal University, Qingyuan, 511517, China. Electronic address:
Zero-valent iron (ZVI) has been confirmed in enhancing methane production by improving interspecies electron transfer during anaerobic digestion (AD) of waste activated sludge (WAS). In this study, we suppose that sulfidated zero-valent iron (S-ZVI), a semiconductor material, has better property of electron transfer in AD process. Based on two-phase anaerobic digestion process, nitrite and S-ZVI were used separately for improving acidogenic phase and methanogenic phase of anaerobic sludge digestion.
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, China. Electronic address:
The treatment of landfill leachate using anaerobic membrane bioreactors (AnMBRs) often faces challenges such as poor removal efficiency, low methane yield and membrane fouling. This study applied AnMBRs with incrementally adding conductive materials to enhance the treatment of landfill leachate under high organic loading rates(35 kg COD/(m∙d)). With 50 g/L activated carbon, COD removal percentages and methane yield increased to 81.
View Article and Find Full Text PDFWaste Manag
January 2025
Qilu University of Technology (Shandong Academy of Sciences), Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Jinan 250014, China. Electronic address:
Municipal solid waste incineration fly ash (MSWIFA) is considered a hazardous solid waste, traditionally disposed by solidified landfill methods. However, solidified landfills present challenges with leaching heavy metals, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). To address this issue, this study examined two pretreatment methods for MSWIFA: sintering at 850℃ for 30 min and washing with three water baths (20 min each) at a 3:1 liquid-solid ratio.
View Article and Find Full Text PDFInsects
December 2024
Department of Integrative Agriculture, United Arab Emirates University, Al Ain, Abu Dhabi P.O. Box 15551, United Arab Emirates.
Poultry litter waste management poses a significant global challenge, attributed to its characteristics (odorous, organic, pathogenic, attracting flies). Conventional approaches to managing poultry litter involve composting, biogas generation, or direct field application. Recently, there has been a surge of interest in a novel technology that involves the bioconversion of organic waste utilizing insects (known as entomoremediation), particularly focusing on black soldier fly larvae (BSFL), and has demonstrated successful transformation of various organic waste materials into insect meal and frass (referred to as organic frasstilizer).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!