We consider an integrated patient monitoring system, combining electronic patient records with high-rate acquisition of patient physiological data. There remain many challenges in increasing the robustness of "e-health" applications to a level at which they are clinically useful, particularly in the use of automated algorithms used to detect and cope with artifact in data contained within the electronic patient record, and in analyzing and communicating the resultant data for reporting to clinicians. There is a consequential "plague of pilots," in which engineering prototype systems do not enter into clinical use. This paper describes an approach in which, for the first time, the Emergency Department (ED) of a major research hospital has adopted such systems for use during a large clinical trial. We describe the disadvantages of existing evaluation metrics when applied to such large trials, and propose a solution suitable for large-scale validation. We demonstrate that machine learning technologies embedded within healthcare information systems can provide clinical benefit, with the potential to improve patient outcomes in the busy environment of a major ED and other high-dependence areas of patient care.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2012.2234130 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!