A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cu(II)-ion-catalyzed solvolysis of N,N-bis(2-picolyl)ureas in alcohol solvents: evidence for cleavage involving nucleophilic addition and strong assistance of bis(2-picolyl)amine leaving group departure. | LitMetric

The kinetics and products for solvolysis of N-p-nitrophenyl-N',N'-bis(pyridin-2-ylmethyl) urea (7a), N-methyl-N-p-nitrophenyl-N',N'-bis(pyridin-2-yl methyl) urea (7b), and N-phenyl-N',N'-bis(pyridin-2-yl-methyl) urea (DPPU) (7c) promoted by Cu(II) ion in methanol and ethanol were studied under (s)(s)pH-controlled conditions at 25 °C. Methanolysis and ethanolysis of these substrates proceeds rapidly at a 1:1 ratio of substrate:metal ion, the half-times for decomposition of the Cu(II):7a complexes being ~150 min in methanol and 15 min in ethanol. In all cases, the reaction products are the Cu(II) complex of bis(2-picolyl)amine and the O-methyl or O-ethyl carbamate of the parent aniline, signifying that the point of cleavage is the bis(2-picolyl)-N-C=O bond. Reactions of the Cu(II):7b complexes in each solvent proceed about 3-5 times slower than their respective Cu(II):7a complexes, excluding an elimination mechanism that proceeds through an isocyanate which subsequently adds alcohol to give the observed products. The reactions also proceed in other solvents, with the order of reactivity ethanol > methanol >1-propanol >2-propanol > acetonitrile (with 0.2% methanol) > water spanning a range of 150-fold. The mechanism of the reactions is discussed, and the reactivity and mode of cleavage are compared with that of the M(II)-promoted ethanolytic cleavage of a mono-2-picolyl derivative, N-p-nitrophenyl-N'-(pyridin-2-yl-methyl) urea (4a), which had previously been shown to cleave at the aniline N-C=O bond. The large estimated acceleration of the rate of attack of ethoxide on 7b of at least 2 × 10¹⁶ provided by associating Cu(II) with the departing group in this urea is discussed in terms of a trifunctional role for the metal ion involving Lewis acid activation of the substrate, intramolecular delivery of a Cu(II)-coordinated ethoxide, and metal-ion-assisted leaving group departure.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic500620kDOI Listing

Publication Analysis

Top Keywords

leaving group
8
group departure
8
cuii7a complexes
8
urea
5
cuii-ion-catalyzed solvolysis
4
solvolysis nn-bis2-picolylureas
4
nn-bis2-picolylureas alcohol
4
alcohol solvents
4
solvents evidence
4
cleavage
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!