Designed synthesis of large-pore crystalline polyimide covalent organic frameworks.

Nat Commun

Department of Chemical and Biomolecular Engineering, Center for Catalytic Science and Technology, University of Delaware, Newark Delaware 19716, USA.

Published: July 2014

Covalent organic frameworks (COFs) are an emerging class of porous crystalline polymers with a wide variety of applications. They are currently synthesized through only a few chemical reactions, limiting the access and exploitation of new structures and properties. Here we report that the imidization reaction can be used to prepare a series of polyimide (PI) COFs with pore size as large as 42 × 53 Å(2), which is among the largest reported to date, and surface area as high as 2,346 m(2) g(-1), which exceeds that of all amorphous porous PIs and is among the highest reported for two-dimensional COFs. These PI COFs are thermally stable up to 530 °C. We also assemble a large dye molecule into a COF that shows sensitive temperature-dependent luminescent properties.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms5503DOI Listing

Publication Analysis

Top Keywords

covalent organic
8
organic frameworks
8
designed synthesis
4
synthesis large-pore
4
large-pore crystalline
4
crystalline polyimide
4
polyimide covalent
4
frameworks covalent
4
cofs
4
frameworks cofs
4

Similar Publications

The carboxymethyl chitosan (CMCS)-based porous beads are still criticized for their limited number of binding sites, which impairs their efficacy in removing aqueous pollutants. To overcome this challenge, this work introduces the production of covalently crosslinked CMCS-based beads containing SiO and poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS). The porous composite beads not only possess remarkable stability under acidic conditions, but also have abundant active binding sites for adsorption.

View Article and Find Full Text PDF

Benzotrithiophene-based covalent organic frameworks for sensitive fluorescence detection and efficient removal of Ag from drinking water.

Talanta

December 2024

Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Macromolecules Science and Processing, Shenzhen University, Shenzhen 518060, China. Electronic address:

The simultaneous detection and removal of Ag from drinking water was crucial for preventing human health, while it was also extremely challenging due to bifunctional materials that combine both Ag adsorption and detection functions rarely being explored. In this study, a benzotrithiophene-based covalent organic framework (TAPA-BTT) was synthesized and applied to detect and remove Ag. TAPA-BTT exhibited high crystallinity, a large specific surface area, and good thermal stability.

View Article and Find Full Text PDF

Membrane technology is an important component of resource recovery. Covalent organic frameworks (COFs) with inherent long-range ordered structure and permanent porosity are ideal materials for fabricating advanced membrane. Zwitterionic COFs have unique features beyond single ionic COFs containing anions or cations.

View Article and Find Full Text PDF

Mercury sequestration in alkaline salt low-level radioactive waste.

Environ Sci Pollut Res Int

January 2025

Savannah River National Laboratory, Aiken, SC, USA.

Liquid low-level radioactive waste at the Savannah River Site contains several species of mercury, including inorganic, elemental, and methylmercury. This waste is solidified and stabilized in a cementitious waste form referred to as saltstone. Soluble mercury is stabilized as β-cinnabar, HgS as the result of reaction between the mercury and sulfur present in blast furnace slag, one of the cementitious reagents.

View Article and Find Full Text PDF

Thiol-Ene Click Chemistry: A General Strategy for Tuning the Properties of Vinylene-Linked Covalent Organic Frameworks.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China.

Article Synopsis
  • Vinylene-linked Covalent Organic Frameworks (V-2D-COFs) are advanced materials known for their stable, crystalline structures and excellent optoelectronic properties, but their synthesis is limited due to challenges with C═C bonds.
  • Postsynthetic modification (PSM) offers a solution by allowing the introduction of functional groups into these frameworks, thus expanding their potential applications.
  • The study demonstrates a thiol-ene click reaction to successfully modify two COFs, enhancing their properties and structural versatility, which could lead to new applications in areas like hydrophilicity and proton conductivity.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!