Catabolite control protein A is an important regulator of metabolism in type 2.

Biomed Rep

Institute of Military Veterinary, Academy of Military Medical Sciences, Jilin Agricultural University, Changchun, Jilin 130122, P.R. China ; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Jilin Agricultural University, Changchun, Jilin 130122, P.R. China.

Published: September 2014

AI Article Synopsis

  • * Catabolite control protein A (CcpA) is a key regulator that influences bacterial growth on glucose or galactose and affects how bacteria metabolize nutrients, impacting their virulence.
  • * A study using metabolomics revealed 37 metabolites that differed between the native type 2 bacteria and a CcpA mutant, highlighting the importance of CcpA in understanding bacterial protein functions.

Article Abstract

() type 2 is an extremely important Gram-positive bacterial pathogen that can cause human or swine endocarditis, meningitis, bronchopneumonia, arthritis and sepsis. Catabolite control protein A (CcpA) is a major transcriptional regulator in type 2 that functions in catabolite control, specifically during growth on glucose or galactose. The regulation of central metabolism can affect the virulence of bacteria. In the present study, a metabolomics approach was used along with principal components analysis (PCA) and partial least-squares-discriminant analysis (PLS-DA) models and 37 metabolites were found that differed substantially between native and a mutant lacking CcpA. These results showed that CcpA is an important protein in type 2 for studying bacterial protein function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4106511PMC
http://dx.doi.org/10.3892/br.2014.307DOI Listing

Publication Analysis

Top Keywords

catabolite control
12
control protein
8
protein
4
protein regulator
4
regulator metabolism
4
type
4
metabolism type
4
type type
4
type extremely
4
extremely gram-positive
4

Similar Publications

A non-purine inhibitor of xanthine oxidoreductase mitigates adenosine triphosphate degradation under hypoxic conditions in mouse brain.

Brain Res

January 2025

Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan. Electronic address:

The brain is an organ that consumes a substantial amount of oxygen, and a reduction in oxygen concentration can rapidly lead to significant and irreversible brain injury. The progression of brain injury during hypoxia involves the depletion of intracellular adenosine triphosphate (ATP) due to decreased oxidative phosphorylation in the inner mitochondrial membrane. Allopurinol is a purine analog inhibitor of xanthine oxidoreductase that protects against hypoxic/ischemic brain injury; however, its underlying mechanism of action remains unclear.

View Article and Find Full Text PDF

Objective: To characterize early physiologic stresses imposed by surgery by applying metabolomic analyses to deeply phenotype pre- and postoperative plasma and urine of patients undergoing elective surgical procedures.

Background: Patients experience perioperative stress through depletion of metabolic fuels. Bowel stasis or injury might allow more microbiome-derived uremic toxins to enter the blood, while the liver and kidney are simultaneously clearing analgesic and anesthetic drugs.

View Article and Find Full Text PDF

Resveratrol (RSV), a natural polyphenol, has been suggested to influence glucose and lipid metabolism. However, the underlying molecular mechanism of its action remains largely unknown due to its multiple biological targets and low bioavailability. In this study, we demonstrate that RSV supplementation ameliorates high-fat-diet (HFD)-induced gut microbiota dysbiosis, enhancing the abundance of anti-obesity bacterial strains such as and .

View Article and Find Full Text PDF
Article Synopsis
  • Nitrogen is crucial for the growth and development of fungi, and while the GATA transcription factor AreA is well-studied, AreB’s role in Aspergillus flavus is less understood.
  • Researchers characterized the areB gene in A. flavus, finding that its deletion negatively affects fungal growth, reduces spore production, and increases aflatoxin production, especially under poor nitrogen conditions.
  • The study highlights areB's role as a negative regulator of nitrogen catabolite repression, affecting not only nitrogen utilization but also development and secondary metabolism, which could aid in managing aflatoxin contamination.
View Article and Find Full Text PDF

Impact of astaxanthin on the capacity of gut microbiota to produce tryptophan catabolites.

Food Funct

December 2024

State Key Laboratory of Marine Food Processing &Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.

This study utilized colonic fermentation to examine the impact of astaxanthin on the microbial catabolism of tryptophan. Astaxanthin significantly altered the gut microbiota and raised the tryptophan catabolism metabolite levels in an human colonic fermentation system. To eliminate the influence of substrate availability, we conducted colonic fermentation of the gut microbiota of astaxanthin-domesticated mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!