AI Article Synopsis

  • Relapse is a major challenge in long-term drug addiction treatment, particularly with cocaine, which increases dopamine levels and drives craving behavior.
  • Research shows that the neuropeptide galanin and its synthetic analog, galnon, can reduce the rewarding effects of cocaine and mitigate hyperactivity and relapse behaviors in rats without affecting overall motor functions or food-seeking behaviors.
  • These findings suggest that targeting the dopamine system with compounds like galnon could be a promising strategy for treating cocaine dependence.

Article Abstract

Relapse represents one of the most significant problems in the long-term treatment of drug addiction. Cocaine blocks plasma membrane monoamine transporters and increases dopamine (DA) overflow in the brain, and DA is critical for the motivational and primary reinforcing effects of the drug as well as cocaine-primed reinstatement of cocaine seeking in rats, a model of relapse. Thus, modulators of the DA system may be effective for the treatment of cocaine dependence. The endogenous neuropeptide galanin inhibits DA transmission, and both galanin and the synthetic galanin receptor agonist, galnon, interfere with some rewarding properties of cocaine. The purpose of this study was to further assess the effects of galnon on cocaine-induced behaviors and neurochemistry in rats. We found that galnon attenuated cocaine-induced motor activity, reinstatement and DA overflow in the frontal cortex at a dose that did not reduce baseline motor activity, stable self-administration of cocaine, baseline extracellular DA levels or cocaine-induced DA overflow in the nucleus accumbens (NAc). Similar to cocaine, galnon had no effect on stable food self-administration but reduced food-primed reinstatement. These results indicate that galnon can diminish cocaine-induced hyperactivity and relapse-like behavior, possibly in part by modulating DA transmission in the frontal cortex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4305031PMC
http://dx.doi.org/10.1111/adb.12166DOI Listing

Publication Analysis

Top Keywords

frontal cortex
12
galanin receptor
8
receptor agonist
8
agonist galnon
8
dopamine overflow
8
overflow frontal
8
motor activity
8
galnon
6
cocaine
6
cocaine-induced
5

Similar Publications

We performed a systematic review of the ictal semiology of temporo-frontal seizures with the aim to summarize the state-of-the-art anatomo-clinical correlations in the field, and help guide the interpretation of ictal semiology within the framework of presurgical evaluation. We conducted the systematic review and meta-analysis, and reported its results according to the Preferred Reporting Items for Systematic Review and Meta-Analysis statement. We searched electronic databases (Scopus, PUBMED, Web of Science, and EMBASE) using relevant keywords related to temporal, frontal and sublobar structures, semiology, and electroencephalography/stereoelectroencephalography exploration.

View Article and Find Full Text PDF

Background: Dance has emerged as a complementary treatment that may promote adaptive neural plasticity while improving symptoms of Parkinson disease (PD), such as balance, gait, posture, and walking. Understanding brain changes that arise from participation in dance interventions is important as these neural plastic changes play an important role in protecting and healing the brain. Although dance has been shown to improve PD motor and nonmotor symptoms, the neural mechanisms underlying these changes, specifically depression and mood, remain elusive.

View Article and Find Full Text PDF

Purpose: Parkinson disease (PD) is a progressive neurodegenerative disease. The aim of this study is to investigate the association between acoustic and cortical brain features in Parkinson's disease patients.

Methods: We recruited 19 (eight females, 11 males) Parkinson's disease patients and 19 (eight females, 11 males) healthy subjects to participate in the experiment.

View Article and Find Full Text PDF

Resting-State Network Plasticity Following Category Learning Depends on Sensory Modality.

Hum Brain Mapp

December 2024

Institute of Cognitive Neuroscience, Department of Biopsychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.

Learning new categories is fundamental to cognition, occurring in daily life through various sensory modalities. However, it is not well known how acquiring new categories can modulate the brain networks. Resting-state functional connectivity is an effective method for detecting short-term brain alterations induced by various modality-based learning experiences.

View Article and Find Full Text PDF

Introduction: Carbonated water (CarbW) affects the swallowing function associated with the action of the brainstem. In addition, CarbW ingestion promotes mean blood flow in the middle cerebral artery, which is associated with blood flow to the frontal and temporal lobes. In this milieu, studies regarding the effect of drinking CarbW on brain activity are of significance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!