Background: The high prevalence of Coxiella burnetii infection in dairy cattle herds recently reported and the long survival time of the bacterium in the environment pose a risk to human and animal health that calls for the implementation of control measures at herd level. This study presents the results of a 2-year vaccination program with an inactivated phase I vaccine in a Spanish dairy herd naturally infected with C. burnetii. Calves older than 3 months and non-pregnant heifers and cows were vaccinated in April 2011 and the farm was subsequently visited at a monthly basis for vaccination of recently calved cows and calves that reached the age of 3 months. Annual booster doses were given to previous vaccinated animals as well. The effectiveness of the vaccine was assessed in terms of level of C. burnetii shedding through milk and uterine fluids and environmental contamination as determined by polymerase chain reaction (PCR).
Results: The percentage of shedder animals through uterine fluids and milk progressively decreased, and C. burnetii DNA load in bulk-tank milk samples was low at the end of the study. The average seroconversion rate in not yet vaccinated animals, which acted as control group, was 8.6% during the first year and 0% in the second year. DNA of C. burnetii was found in aerosols and dust samples taken in the calving area only at the beginning of the study, whereas slurry samples remained C. burnetii PCR positive for at least 18 months. Multiple Locus Variable number tandem-repeat Analysis identified the same genotype in all C. burnetii DNA positive samples.
Conclusions: In the absence of any changes in biosecurity, the overall reduction of C. burnetii infection in animals to 1.2% milk shedders and the reduced environment contamination found at the end of the study was ascribed to the effects of vaccination together with the culling of milk shedders. Vaccination has to be planned as a medium-long term strategy to suppress risks of re-infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4115166 | PMC |
http://dx.doi.org/10.1186/s13028-014-0047-1 | DOI Listing |
Infect Drug Resist
January 2025
Department of Organ Transplantation, The Third Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China.
Q fever is a zoonotic disease caused by the Gram-negative bacterium , typically transmitted through exposure to infected animal secretions. As the clinical signs of Q-fever are largely non-specific in humans, a definitive diagnosis can often be overlooked, particularly when physicians fail to consider on the list of differentials. This case report describes Q-fever in a male patient who had previously undergone orthotopic liver transplantation.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
Background: Coxiella burnetii is the etiological agent of Q fever in humans, a zoonosis of increasingly important public health concern. The disease results in significant economic losses to livestock farmers and its presence in ready-to-eat dairy products poses a public health threat to consumers.
Aim: This study aimed to detect Coxiella burnetii in dairy products in Kwara State, Nigeria.
Microorganisms
December 2024
Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Wagramer Strasse 5, P.O. Box 100, 1400 Vienna, Austria.
Abortion is one of the major causes of economic losses in livestock production worldwide. Because several factors can lead to abortion in cattle, sheep and goats, laboratory diagnosis, including the molecular detection of pathogens causing abortion, is often necessary. Bacterial zoonotic diseases such as brucellosis, coxiellosis, leptospirosis, and listeriosis have been implicated in livestock abortion, but they are under diagnosed and under-reported in most developing countries, including Botswana.
View Article and Find Full Text PDFBMC Res Notes
December 2024
Ethiopian Institute of Agricultural Research, National Agricultural Biotechnology Research Center, P.O. Box: 249, Holeta, Ethiopia.
Background: The reproductive problem is an animal health-related bottleneck that constrains livestock genetic improvement efforts in tropical countries such as Ethiopia. The infectious causes of reproductive disorders are one cause of decreased reproductive efficiency. This study aimed to determine the seroprevalence to Bovine Herpesvirus-1 (BHV1), Bovine Viral Diarrhea Virus (BVDV), Neospora caninum (N.
View Article and Find Full Text PDFOne Health
December 2024
One Health Research Group, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito, Ecuador, 170503.
Q fever, caused by the bacterium , is a zoonotic disease that has been largely overlooked despite presenting significant risks to both animal and public health. Although well studied in some countries, in most countries in Latin America, there's a lack of information on infection, its prevalence, and its impact on both livestock and human populations. To address this gap, we conducted a serosurvey among farm workers, cattle, sheep, and dogs on two dairy farms in Ecuador using a commercial ELISA kit.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!