Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Disturbed one-carbon (1-C) metabolism in the mother is associated with poor fetal growth but causality of this relationship has not been established.
Methods: We studied the association between maternal total homocysteine and offspring birthweight in the Pune Maternal Nutrition Study (PMNS, Pune, India) and Parthenon Cohort Study (Mysore, India). We tested for evidence of causality within a Mendelian randomization framework, using a methylenetetrahydrofolatereductase (MTHFR) gene variant rs1801133 (earlier known as 677C→T) by instrumental variable and triangulation analysis, separately and using meta-analysis.
Results: Median (IQR) homocysteine concentration and mean (SD) birthweight were 8.6 µmol/l (6.7,10.8) and 2642 g (379) in the PMNS and 6.0 µmol/l (5.1,7.1) and 2871 g (443) in the Parthenon study. Offspring birthweight was inversely related to maternal homocysteine concentration-PMNS: -22 g/SD [95% confidence interval (CI): (-50, 5), adjusted for gestational age and offspring gender]; Parthenon: -57 g (-92, -21); meta-analysis: -40 g (-62, -17)]. Maternal risk genotype at rs1801133 predicted higher homocysteine concentration [PMNS: 0.30 SD/allele (0.14, 0.46); Parthenon: 0.21 SD (0.02, 0.40); meta-analysis: 0.26 SD (0.14, 0.39)]; and lower birthweight [PMNS: -46 g (-102, 11, adjusted for gestational age, offspring gender and rs1801133 genotype); Parthenon: -78 g (-170, 15); meta-analysis: -61 g (-111, -10)]. Instrumental variable and triangulation analysis supported a causal association between maternal homocysteine concentration and offspring birthweight.
Conclusions: Our findings suggest a causal role for maternal homocysteine (1-C metabolism) in fetal growth. Reducing maternal homocysteine concentrations may improve fetal growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190518 | PMC |
http://dx.doi.org/10.1093/ije/dyu132 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!