Autophagy plays a crucial role in host defence by facilitating the degradation of invading bacteria such as Group A Streptococcus (GAS). GAS-containing autophagosome-like vacuoles (GcAVs) form when GAS-targeting autophagic membranes entrap invading bacteria. However, the membrane origin and the precise molecular mechanism that underlies GcAV formation remain unclear. In this study, we found that Rab17 mediates the supply of membrane from recycling endosomes (REs) to GcAVs. We showed that GcAVs contain the RE marker transferrin receptor (TfR). Colocalization analyses demonstrated that Rab17 colocalized effectively with GcAV. Rab17 and TfR were visible as punctate structures attached to GcAVs and the Rab17-positive dots were recruited to the GAS-capturing membrane. Overexpression of Rab17 increased the TfR-positive GcAV content, whereas expression of the dominant-negative Rab17 form (Rab17 N132I) caused a decrease, thereby suggesting the involvement of Rab17 in RE-GcAV fusion. The efficiency of GcAV formation was lower in Rab17 N132I-overexpressing cells. Furthermore, knockdown of Rabex-5, the upstream activator of Rab17, reduced the GcAV formation efficiency. These results suggest that Rab17 and Rab17-mediated REs are involved in GcAV formation. This newly identified function of Rab17 in supplying membrane from REs to GcAVs demonstrates that RE functions as a primary membrane source during antibacterial autophagy.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cmi.12329DOI Listing

Publication Analysis

Top Keywords

gcav formation
16
rab17
11
recycling endosomes
8
group streptococcus
8
invading bacteria
8
res gcavs
8
gcav
6
formation
5
gcavs
5
membrane
5

Similar Publications

Ionic Mechanisms of Impulse Propagation Failure in the FHF2-Deficient Heart.

Circ Res

December 2020

The Leon H. Charney Division of Cardiology (D.S.P., A.S., J.S., G.R.-T., S.M., X.L., E.W.C., D.N., G.I.F.), New York University School of Medicine.

Rationale: FHFs (fibroblast growth factor homologous factors) are key regulators of sodium channel (Na) inactivation. Mutations in these critical proteins have been implicated in human diseases including Brugada syndrome, idiopathic ventricular arrhythmias, and epileptic encephalopathy. The underlying ionic mechanisms by which reduced Na availability in knockout () mice predisposes to abnormal excitability at the tissue level are not well defined.

View Article and Find Full Text PDF

Autophagy selectively targets invading bacteria to defend cells, whereas bacterial pathogens counteract autophagy to survive in cells. The initiation of canonical autophagy involves the PIK3C3 complex, but autophagy targeting Group A (GAS) is PIK3C3-independent. We report that GAS infection elicits both PIK3C3-dependent and -independent autophagy, and that the GAS effector NAD-glycohydrolase (Nga) selectively modulates PIK3C3-dependent autophagy.

View Article and Find Full Text PDF

Macroautophagy/autophagy plays an important role in the immune response to invasion by intracellular pathogens such as group A Streptococcus (GAS; Streptococcus pyogenes). We previously identified RAB30, a Golgi-resident GTPase, as a novel anti-bacterial autophagic regulator in the formation of GAS-containing autophagosome-like vacuoles (GcAVs); however, the precise mechanism underlying this process remains elusive. Here, we elucidate a novel property of RAB30: the ability to recruit PI4KB (phosphatidylinositol 4-kinase beta) to the Golgi apparatus and GcAVs.

View Article and Find Full Text PDF

Macroautophagy/autophagy plays a critical role in immunity by directly degrading invading pathogens such as Group A Streptococcus (GAS), through a process that has been named xenophagy. We previously demonstrated that autophagic vacuoles directed against GAS, termed GAS-containing autophagosome-like vacuoles (GcAVs), use recycling endosomes (REs) as a membrane source. However, the precise molecular mechanism that facilitates the fusion between GcAVs and REs remains unclear.

View Article and Find Full Text PDF

Golgi-Resident GTPase Rab30 Promotes the Biogenesis of Pathogen-Containing Autophagosomes.

PLoS One

July 2016

Department of Bacterial Pathogenesis, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo 113-8549, Japan.

Autophagy acts as a host-defense system against pathogenic microorganisms such as Group A Streptococcus (GAS). Autophagy is a membrane-mediated degradation system that is regulated by intracellular membrane trafficking regulators, including small GTPase Rab proteins. Here, we identified Rab30 as a novel regulator of GAS-containing autophagosome-like vacuoles (GcAVs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!